
1/22

Introduction
Algorithm

Variance-Aware Sparse Linear Bandits
(Published as a conference paper at ICLR 2023)

Yan Dai 1 Ruosong Wang 2 Simon S. Du 2

1IIIS, Tsinghua University 2Paul G. Allen School, University of Washington

Yan Dai Variance-Aware Sparse Linear Bandits

2/22

Introduction
Algorithm

Table of Contents

1 Introduction
Preliminaries
Related Work

2 Algorithm
Classical Design
Our Design

Yan Dai Variance-Aware Sparse Linear Bandits

3/22

Introduction
Algorithm

Preliminaries
Related Work

Linear Bandit

A T -round game between an agent and the environment.1

For each round t = 1, 2, . . . ,T , the agent plays an action at
from the unit sphere Sd−1 (our assumption).
For this round, she gains reward r(at) = ⟨at , θ

∗⟩ where
θ∗ ∈ Sd−1 is a fixed but unknown parameter.
She cannot direcly access r(at), but only observes noisy
feedback r(at) + ηt where ηt is a zero-mean random noise.
Typically assume Var(ηt) ≤ 1 for all t.

1Figure from Reinforcement Learning – Multi-Arm Bandit Implementation, Jeremy Zhang.

Yan Dai Variance-Aware Sparse Linear Bandits

https://towardsdatascience.com/reinforcement-learning-multi-arm-bandit-implementation-5399ef67b24b

3/22

Introduction
Algorithm

Preliminaries
Related Work

Linear Bandit

A T -round game between an agent and the environment.1

For each round t = 1, 2, . . . ,T , the agent plays an action at
from the unit sphere Sd−1 (our assumption).

For this round, she gains reward r(at) = ⟨at , θ
∗⟩ where

θ∗ ∈ Sd−1 is a fixed but unknown parameter.
She cannot direcly access r(at), but only observes noisy
feedback r(at) + ηt where ηt is a zero-mean random noise.
Typically assume Var(ηt) ≤ 1 for all t.

1Figure from Reinforcement Learning – Multi-Arm Bandit Implementation, Jeremy Zhang.

Yan Dai Variance-Aware Sparse Linear Bandits

https://towardsdatascience.com/reinforcement-learning-multi-arm-bandit-implementation-5399ef67b24b

3/22

Introduction
Algorithm

Preliminaries
Related Work

Linear Bandit

A T -round game between an agent and the environment.1

For each round t = 1, 2, . . . ,T , the agent plays an action at
from the unit sphere Sd−1 (our assumption).
For this round, she gains reward r(at) = ⟨at , θ

∗⟩ where
θ∗ ∈ Sd−1 is a fixed but unknown parameter.

She cannot direcly access r(at), but only observes noisy
feedback r(at) + ηt where ηt is a zero-mean random noise.
Typically assume Var(ηt) ≤ 1 for all t.

1Figure from Reinforcement Learning – Multi-Arm Bandit Implementation, Jeremy Zhang.

Yan Dai Variance-Aware Sparse Linear Bandits

https://towardsdatascience.com/reinforcement-learning-multi-arm-bandit-implementation-5399ef67b24b

3/22

Introduction
Algorithm

Preliminaries
Related Work

Linear Bandit

A T -round game between an agent and the environment.1

For each round t = 1, 2, . . . ,T , the agent plays an action at
from the unit sphere Sd−1 (our assumption).
For this round, she gains reward r(at) = ⟨at , θ

∗⟩ where
θ∗ ∈ Sd−1 is a fixed but unknown parameter.
She cannot direcly access r(at), but only observes noisy
feedback r(at) + ηt where ηt is a zero-mean random noise.
Typically assume Var(ηt) ≤ 1 for all t.

1Figure from Reinforcement Learning – Multi-Arm Bandit Implementation, Jeremy Zhang.

Yan Dai Variance-Aware Sparse Linear Bandits

https://towardsdatascience.com/reinforcement-learning-multi-arm-bandit-implementation-5399ef67b24b

4/22

Introduction
Algorithm

Preliminaries
Related Work

Agent’s Goal?

Maximize the (expected) total reward

E

[T∑
t=1

r(at)

]
= E

[T∑
t=1

⟨at , θ
∗⟩

]
,

or equivalently, minimize the regret

RT ≜ max
a∈Sd−1

E

[T∑
t=1

⟨a − at , θ
∗⟩

]
.

= E

[T∑
t=1

⟨θ∗ − at , θ
∗⟩

]
.

Yan Dai Variance-Aware Sparse Linear Bandits

4/22

Introduction
Algorithm

Preliminaries
Related Work

Agent’s Goal?

Maximize the (expected) total reward

E

[T∑
t=1

r(at)

]
= E

[T∑
t=1

⟨at , θ
∗⟩

]
,

or equivalently, minimize the regret

RT ≜ max
a∈Sd−1

E

[T∑
t=1

⟨a − at , θ
∗⟩

]
.

= E

[T∑
t=1

⟨θ∗ − at , θ
∗⟩

]
.

Yan Dai Variance-Aware Sparse Linear Bandits

5/22

Introduction
Algorithm

Preliminaries
Related Work

Sparse Linear Bandit

θ∗ is guaranteed to have only a few non-zero coordinates, i.e.,
s ≜ ∥θ∗∥0 satisfies s ≪ d. However, s is unknown to the agent.

Known Results:
Upper Bound: Õ(

√
sdT) [Abbasi-Yadkori et al., 2012].

Lower Bound: Ω(
√

dT) [Antos and Szepesvári, 2009] even
when sparsity factor s = 1 and the action set is Sd−1.
Conclusion: Õ(

√
sdT) is minimax optimal for SLB.

Yan Dai Variance-Aware Sparse Linear Bandits

5/22

Introduction
Algorithm

Preliminaries
Related Work

Sparse Linear Bandit

θ∗ is guaranteed to have only a few non-zero coordinates, i.e.,
s ≜ ∥θ∗∥0 satisfies s ≪ d. However, s is unknown to the agent.

Known Results:
Upper Bound: Õ(

√
sdT) [Abbasi-Yadkori et al., 2012].

Lower Bound: Ω(
√

dT) [Antos and Szepesvári, 2009] even
when sparsity factor s = 1 and the action set is Sd−1.

Conclusion: Õ(
√

sdT) is minimax optimal for SLB.

Yan Dai Variance-Aware Sparse Linear Bandits

5/22

Introduction
Algorithm

Preliminaries
Related Work

Sparse Linear Bandit

θ∗ is guaranteed to have only a few non-zero coordinates, i.e.,
s ≜ ∥θ∗∥0 satisfies s ≪ d. However, s is unknown to the agent.

Known Results:
Upper Bound: Õ(

√
sdT) [Abbasi-Yadkori et al., 2012].

Lower Bound: Ω(
√

dT) [Antos and Szepesvári, 2009] even
when sparsity factor s = 1 and the action set is Sd−1.
Conclusion: Õ(

√
sdT) is minimax optimal for SLB.

Yan Dai Variance-Aware Sparse Linear Bandits

6/22

Introduction
Algorithm

Preliminaries
Related Work

Variance-Aware Sparse Linear Bandit?

The noises {ηt}T
t=1 have time-dependent variances. Formally,

ηt ∼ N (0, σ2
t) where σt ∈ [0, 1] varies with time (and is hidden).

Worst Case (σt ≡ 1): Õ(
√

sdT) is known to be optimal.
Deterministic case (σt ≡ 0): Divide-and-Conquer gets Õ(s).
In Between? This paper!
Design an algorithm whose regret is variance-aware:

RT = Õ

poly(s)

√√√√d
T∑

t=1
σ2

t + poly(s)

 ,

where σ2
t = Var(ηt) ∈ [0, 1] is the noise variance (σt ’s are all

unknown) and s = ∥θ∗∥0 is the sparsity (s is also unknown).

Yan Dai Variance-Aware Sparse Linear Bandits

6/22

Introduction
Algorithm

Preliminaries
Related Work

Variance-Aware Sparse Linear Bandit?

The noises {ηt}T
t=1 have time-dependent variances. Formally,

ηt ∼ N (0, σ2
t) where σt ∈ [0, 1] varies with time (and is hidden).

Worst Case (σt ≡ 1): Õ(
√

sdT) is known to be optimal.

Deterministic case (σt ≡ 0): Divide-and-Conquer gets Õ(s).
In Between? This paper!
Design an algorithm whose regret is variance-aware:

RT = Õ

poly(s)

√√√√d
T∑

t=1
σ2

t + poly(s)

 ,

where σ2
t = Var(ηt) ∈ [0, 1] is the noise variance (σt ’s are all

unknown) and s = ∥θ∗∥0 is the sparsity (s is also unknown).

Yan Dai Variance-Aware Sparse Linear Bandits

6/22

Introduction
Algorithm

Preliminaries
Related Work

Variance-Aware Sparse Linear Bandit?

The noises {ηt}T
t=1 have time-dependent variances. Formally,

ηt ∼ N (0, σ2
t) where σt ∈ [0, 1] varies with time (and is hidden).

Worst Case (σt ≡ 1): Õ(
√

sdT) is known to be optimal.
Deterministic case (σt ≡ 0): Divide-and-Conquer gets Õ(s).

In Between? This paper!
Design an algorithm whose regret is variance-aware:

RT = Õ

poly(s)

√√√√d
T∑

t=1
σ2

t + poly(s)

 ,

where σ2
t = Var(ηt) ∈ [0, 1] is the noise variance (σt ’s are all

unknown) and s = ∥θ∗∥0 is the sparsity (s is also unknown).

Yan Dai Variance-Aware Sparse Linear Bandits

6/22

Introduction
Algorithm

Preliminaries
Related Work

Variance-Aware Sparse Linear Bandit?

The noises {ηt}T
t=1 have time-dependent variances. Formally,

ηt ∼ N (0, σ2
t) where σt ∈ [0, 1] varies with time (and is hidden).

Worst Case (σt ≡ 1): Õ(
√

sdT) is known to be optimal.
Deterministic case (σt ≡ 0): Divide-and-Conquer gets Õ(s).
In Between?

This paper!
Design an algorithm whose regret is variance-aware:

RT = Õ

poly(s)

√√√√d
T∑

t=1
σ2

t + poly(s)

 ,

where σ2
t = Var(ηt) ∈ [0, 1] is the noise variance (σt ’s are all

unknown) and s = ∥θ∗∥0 is the sparsity (s is also unknown).

Yan Dai Variance-Aware Sparse Linear Bandits

6/22

Introduction
Algorithm

Preliminaries
Related Work

Variance-Aware Sparse Linear Bandit?

The noises {ηt}T
t=1 have time-dependent variances. Formally,

ηt ∼ N (0, σ2
t) where σt ∈ [0, 1] varies with time (and is hidden).

Worst Case (σt ≡ 1): Õ(
√

sdT) is known to be optimal.
Deterministic case (σt ≡ 0): Divide-and-Conquer gets Õ(s).
In Between? This paper!
Design an algorithm whose regret is variance-aware:

RT = Õ

poly(s)

√√√√d
T∑

t=1
σ2

t + poly(s)

 ,

where σ2
t = Var(ηt) ∈ [0, 1] is the noise variance (σt ’s are all

unknown) and s = ∥θ∗∥0 is the sparsity (s is also unknown).

Yan Dai Variance-Aware Sparse Linear Bandits

7/22

Introduction
Algorithm

Preliminaries
Related Work

Related Work
1 “Worst-Case” (σt ≡ 1) Sparse Linear Bandit:

Upper Bound: Õ(
√

sdT) [Abbasi-Yadkori et al., 2012].
Lower Bound: Ω(

√
dT) [Antos and Szepesvári, 2009].

2 “Worst-Case” (σt ≡ 1) Linear Bandits (i.e., s = d):
Upper Bound: Õ(d

√
T) [Dani et al., 2008].

Lower Bound: Ω(d
√

T) [Dani et al., 2008].
3 “Variance-Aware” Linear Bandits:

Õ(d1.5
√∑

σ2
t + d2) [Kim et al., 2022].

Õ(d
√∑

σ2
t +

√
dT) [Zhou et al., 2021].

Õ(d
√∑

σ2
t + d) [Zhao et al., 2023] (do not cover).

This paper: convert any VA-LB Alg A to VA-SLB Alg B s.t.:

if A ensures RLB
T = Õ

(
f (d)

√∑
σ2

t + g(d)
)

for some f , g,

then B ensures RSLB
T = Õ

(
(sf (s) + s

√
d)
√∑

σ2
t + sg(s)

)
.

Yan Dai Variance-Aware Sparse Linear Bandits

7/22

Introduction
Algorithm

Preliminaries
Related Work

Related Work
1 “Worst-Case” (σt ≡ 1) Sparse Linear Bandit:

Upper Bound: Õ(
√

sdT) [Abbasi-Yadkori et al., 2012].
Lower Bound: Ω(

√
dT) [Antos and Szepesvári, 2009].

2 “Worst-Case” (σt ≡ 1) Linear Bandits (i.e., s = d):
Upper Bound: Õ(d

√
T) [Dani et al., 2008].

Lower Bound: Ω(d
√

T) [Dani et al., 2008].

3 “Variance-Aware” Linear Bandits:
Õ(d1.5

√∑
σ2

t + d2) [Kim et al., 2022].
Õ(d

√∑
σ2

t +
√

dT) [Zhou et al., 2021].
Õ(d

√∑
σ2

t + d) [Zhao et al., 2023] (do not cover).
This paper: convert any VA-LB Alg A to VA-SLB Alg B s.t.:

if A ensures RLB
T = Õ

(
f (d)

√∑
σ2

t + g(d)
)

for some f , g,

then B ensures RSLB
T = Õ

(
(sf (s) + s

√
d)
√∑

σ2
t + sg(s)

)
.

Yan Dai Variance-Aware Sparse Linear Bandits

7/22

Introduction
Algorithm

Preliminaries
Related Work

Related Work
1 “Worst-Case” (σt ≡ 1) Sparse Linear Bandit:

Upper Bound: Õ(
√

sdT) [Abbasi-Yadkori et al., 2012].
Lower Bound: Ω(

√
dT) [Antos and Szepesvári, 2009].

2 “Worst-Case” (σt ≡ 1) Linear Bandits (i.e., s = d):
Upper Bound: Õ(d

√
T) [Dani et al., 2008].

Lower Bound: Ω(d
√

T) [Dani et al., 2008].
3 “Variance-Aware” Linear Bandits:

Õ(d1.5
√∑

σ2
t + d2) [Kim et al., 2022].

Õ(d
√∑

σ2
t +

√
dT) [Zhou et al., 2021].

Õ(d
√∑

σ2
t + d) [Zhao et al., 2023] (do not cover).

This paper: convert any VA-LB Alg A to VA-SLB Alg B s.t.:

if A ensures RLB
T = Õ

(
f (d)

√∑
σ2

t + g(d)
)

for some f , g,

then B ensures RSLB
T = Õ

(
(sf (s) + s

√
d)
√∑

σ2
t + sg(s)

)
.

Yan Dai Variance-Aware Sparse Linear Bandits

7/22

Introduction
Algorithm

Preliminaries
Related Work

Related Work
1 “Worst-Case” (σt ≡ 1) Sparse Linear Bandit:

Upper Bound: Õ(
√

sdT) [Abbasi-Yadkori et al., 2012].
Lower Bound: Ω(

√
dT) [Antos and Szepesvári, 2009].

2 “Worst-Case” (σt ≡ 1) Linear Bandits (i.e., s = d):
Upper Bound: Õ(d

√
T) [Dani et al., 2008].

Lower Bound: Ω(d
√

T) [Dani et al., 2008].
3 “Variance-Aware” Linear Bandits:

Õ(d1.5
√∑

σ2
t + d2) [Kim et al., 2022].

Õ(d
√∑

σ2
t +

√
dT) [Zhou et al., 2021].

Õ(d
√∑

σ2
t + d) [Zhao et al., 2023] (do not cover).

This paper: convert any VA-LB Alg A to VA-SLB Alg B s.t.:

if A ensures RLB
T = Õ

(
f (d)

√∑
σ2

t + g(d)
)

for some f , g,

then B ensures RSLB
T = Õ

(
(sf (s) + s

√
d)
√∑

σ2
t + sg(s)

)
.

Yan Dai Variance-Aware Sparse Linear Bandits

8/22

Introduction
Algorithm

Classical Design
Our Design

Classical “Explore-then-Commit” Idea
1 Explore: Find coordinates with “large enough” magnitudes.
2 Commit: Play “wisely” on these coordinates (ignore others).

Example [Carpentier and Munos, 2012]:
1 Explore: Identify all i with |θ∗i | = Ω((Ts/d)−1/4) (call this

threshold ∆).Takes N = Õ(∆−2d) = Õ(
√

sdT) rounds to
make the confidence radius

√
d/n smaller than ∆/2.

2 Commit: For the remaining T − N rounds, execute a linear
bandit algorithm on these coordinates (i.e., only consider an
O(s)-dimensional subspace) and play 0 on the other ones.

Regret Analysis: The regret RT = Õ(
√

sdT), as:
Exploration causes no more than N = Õ(

√
sdT) regret.

Commitment on s coordinates has regret Õ(s
√

T).
Each un-explored coordinate i (which is “small”) incurs regret
≤ T∆2 =

√
dT/s; and there are no more than s such i’s.

Yan Dai Variance-Aware Sparse Linear Bandits

8/22

Introduction
Algorithm

Classical Design
Our Design

Classical “Explore-then-Commit” Idea
1 Explore: Find coordinates with “large enough” magnitudes.
2 Commit: Play “wisely” on these coordinates (ignore others).

Example [Carpentier and Munos, 2012]:
1 Explore: Identify all i with |θ∗i | = Ω((Ts/d)−1/4) (call this

threshold ∆).

Takes N = Õ(∆−2d) = Õ(
√

sdT) rounds to
make the confidence radius

√
d/n smaller than ∆/2.

2 Commit: For the remaining T − N rounds, execute a linear
bandit algorithm on these coordinates (i.e., only consider an
O(s)-dimensional subspace) and play 0 on the other ones.

Regret Analysis: The regret RT = Õ(
√

sdT), as:
Exploration causes no more than N = Õ(

√
sdT) regret.

Commitment on s coordinates has regret Õ(s
√

T).
Each un-explored coordinate i (which is “small”) incurs regret
≤ T∆2 =

√
dT/s; and there are no more than s such i’s.

Yan Dai Variance-Aware Sparse Linear Bandits

8/22

Introduction
Algorithm

Classical Design
Our Design

Classical “Explore-then-Commit” Idea
1 Explore: Find coordinates with “large enough” magnitudes.
2 Commit: Play “wisely” on these coordinates (ignore others).

Example [Carpentier and Munos, 2012]:
1 Explore: Identify all i with |θ∗i | = Ω((Ts/d)−1/4) (call this

threshold ∆).Takes N = Õ(∆−2d) = Õ(
√

sdT) rounds to
make the confidence radius

√
d/n smaller than ∆/2.

2 Commit: For the remaining T − N rounds, execute a linear
bandit algorithm on these coordinates (i.e., only consider an
O(s)-dimensional subspace) and play 0 on the other ones.

Regret Analysis: The regret RT = Õ(
√

sdT), as:
Exploration causes no more than N = Õ(

√
sdT) regret.

Commitment on s coordinates has regret Õ(s
√

T).
Each un-explored coordinate i (which is “small”) incurs regret
≤ T∆2 =

√
dT/s; and there are no more than s such i’s.

Yan Dai Variance-Aware Sparse Linear Bandits

8/22

Introduction
Algorithm

Classical Design
Our Design

Classical “Explore-then-Commit” Idea
1 Explore: Find coordinates with “large enough” magnitudes.
2 Commit: Play “wisely” on these coordinates (ignore others).

Example [Carpentier and Munos, 2012]:
1 Explore: Identify all i with |θ∗i | = Ω((Ts/d)−1/4) (call this

threshold ∆).Takes N = Õ(∆−2d) = Õ(
√

sdT) rounds to
make the confidence radius

√
d/n smaller than ∆/2.

2 Commit: For the remaining T − N rounds, execute a linear
bandit algorithm on these coordinates (i.e., only consider an
O(s)-dimensional subspace) and play 0 on the other ones.

Regret Analysis: The regret RT = Õ(
√

sdT), as:
Exploration causes no more than N = Õ(

√
sdT) regret.

Commitment on s coordinates has regret Õ(s
√

T).
Each un-explored coordinate i (which is “small”) incurs regret
≤ T∆2 =

√
dT/s; and there are no more than s such i’s.

Yan Dai Variance-Aware Sparse Linear Bandits

8/22

Introduction
Algorithm

Classical Design
Our Design

Classical “Explore-then-Commit” Idea
1 Explore: Find coordinates with “large enough” magnitudes.
2 Commit: Play “wisely” on these coordinates (ignore others).

Example [Carpentier and Munos, 2012]:
1 Explore: Identify all i with |θ∗i | = Ω((Ts/d)−1/4) (call this

threshold ∆).Takes N = Õ(∆−2d) = Õ(
√

sdT) rounds to
make the confidence radius

√
d/n smaller than ∆/2.

2 Commit: For the remaining T − N rounds, execute a linear
bandit algorithm on these coordinates (i.e., only consider an
O(s)-dimensional subspace) and play 0 on the other ones.

Regret Analysis: The regret RT = Õ(
√

sdT), as:
Exploration causes no more than N = Õ(

√
sdT) regret.

Commitment on s coordinates has regret Õ(s
√

T).
Each un-explored coordinate i (which is “small”) incurs regret
≤ T∆2 =

√
dT/s; and there are no more than s such i’s.

Yan Dai Variance-Aware Sparse Linear Bandits

9/22

Introduction
Algorithm

Classical Design
Our Design

Generalize to Variance-Aware SLB?

Question 1: How to get
√∑

σ2
t -style regret in “commit”?

Answer: Use variance-aware LB algorithms.

Question 2: How to get
√∑

σ2
t -style regret in “explore”?

1 Worst-Case: Exploration thresold ∆ ∼ T−1/4.
2 Deterministic-Case: Exploration thresold ∆ ∼ 0.

Answer: Decide the “threshold” ∆ adaptively.

Yan Dai Variance-Aware Sparse Linear Bandits

9/22

Introduction
Algorithm

Classical Design
Our Design

Generalize to Variance-Aware SLB?

Question 1: How to get
√∑

σ2
t -style regret in “commit”?

Answer: Use variance-aware LB algorithms.

Question 2: How to get
√∑

σ2
t -style regret in “explore”?

1 Worst-Case: Exploration thresold ∆ ∼ T−1/4.
2 Deterministic-Case: Exploration thresold ∆ ∼ 0.

Answer: Decide the “threshold” ∆ adaptively.

Yan Dai Variance-Aware Sparse Linear Bandits

9/22

Introduction
Algorithm

Classical Design
Our Design

Generalize to Variance-Aware SLB?

Question 1: How to get
√∑

σ2
t -style regret in “commit”?

Answer: Use variance-aware LB algorithms.

Question 2: How to get
√∑

σ2
t -style regret in “explore”?

1 Worst-Case: Exploration thresold ∆ ∼ T−1/4.
2 Deterministic-Case: Exploration thresold ∆ ∼ 0.

Answer: Decide the “threshold” ∆ adaptively.

Yan Dai Variance-Aware Sparse Linear Bandits

9/22

Introduction
Algorithm

Classical Design
Our Design

Generalize to Variance-Aware SLB?

Question 1: How to get
√∑

σ2
t -style regret in “commit”?

Answer: Use variance-aware LB algorithms.

Question 2: How to get
√∑

σ2
t -style regret in “explore”?

1 Worst-Case: Exploration thresold ∆ ∼ T−1/4.
2 Deterministic-Case: Exploration thresold ∆ ∼ 0.

Answer: Decide the “threshold” ∆ adaptively.

Yan Dai Variance-Aware Sparse Linear Bandits

9/22

Introduction
Algorithm

Classical Design
Our Design

Generalize to Variance-Aware SLB?

Question 1: How to get
√∑

σ2
t -style regret in “commit”?

Answer: Use variance-aware LB algorithms.

Question 2: How to get
√∑

σ2
t -style regret in “explore”?

1 Worst-Case: Exploration thresold ∆ ∼ T−1/4.
2 Deterministic-Case: Exploration thresold ∆ ∼ 0.

Answer: Decide the “threshold” ∆ adaptively.

Yan Dai Variance-Aware Sparse Linear Bandits

10/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 3: How to do exploration?

Explore all coordinates? Then why halving?
Ignore identified coordinates? Their regret?
Solution: Put estimations on identified (large) coordinates.
Use remaining mass 1 −

∑
θ̂2

i to explore remaining ones.

Yan Dai Variance-Aware Sparse Linear Bandits

10/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 3: How to do exploration?

Explore all coordinates? Then why halving?
Ignore identified coordinates? Their regret?
Solution: Put estimations on identified (large) coordinates.
Use remaining mass 1 −

∑
θ̂2

i to explore remaining ones.

Yan Dai Variance-Aware Sparse Linear Bandits

10/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 3: How to do exploration?

Explore all coordinates? Then why halving?

Ignore identified coordinates? Their regret?
Solution: Put estimations on identified (large) coordinates.
Use remaining mass 1 −

∑
θ̂2

i to explore remaining ones.

Yan Dai Variance-Aware Sparse Linear Bandits

10/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 3: How to do exploration?

Explore all coordinates? Then why halving?
Ignore identified coordinates? Their regret?

Solution: Put estimations on identified (large) coordinates.
Use remaining mass 1 −

∑
θ̂2

i to explore remaining ones.

Yan Dai Variance-Aware Sparse Linear Bandits

10/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 3: How to do exploration?

Explore all coordinates? Then why halving?
Ignore identified coordinates? Their regret?
Solution: Put estimations on identified (large) coordinates.
Use remaining mass 1 −

∑
θ̂2

i to explore remaining ones.

Yan Dai Variance-Aware Sparse Linear Bandits

11/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 4: When to stop exploration?

Confidence radius? (Chernoff / Bernstein ...)
1
n

√
d
∑n

k=1 σ
2
k contains unknown σk ’s?

Use “empirical” observations to replace σ2
k?

Yan Dai Variance-Aware Sparse Linear Bandits

11/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 4: When to stop exploration?

Confidence radius? (Chernoff / Bernstein ...)

1
n

√
d
∑n

k=1 σ
2
k contains unknown σk ’s?

Use “empirical” observations to replace σ2
k?

Yan Dai Variance-Aware Sparse Linear Bandits

11/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 4: When to stop exploration?

Confidence radius? (Chernoff / Bernstein ...)
1
n

√
d
∑n

k=1 σ
2
k contains unknown σk ’s?

Use “empirical” observations to replace σ2
k?

Yan Dai Variance-Aware Sparse Linear Bandits

11/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 4: When to stop exploration?

Confidence radius? (Chernoff / Bernstein ...)
1
n

√
d
∑n

k=1 σ
2
k contains unknown σk ’s?

Use “empirical” observations to replace σ2
k?

Yan Dai Variance-Aware Sparse Linear Bandits

12/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 4: When to stop exploration?

Lemma: For common-mean, independent & symmetric {Xi}n
i=1,∣∣X̄ − µ

∣∣ ≤ 1
n

√√√√2
n∑

i=1
(Xi − X̄)2 ln

4
δ

w.p. 1 − δ,

where n < ∞ is stopping time, µ = E[Xi], and X̄ = 1
n
∑n

i=1 Xi .
Yan Dai Variance-Aware Sparse Linear Bandits

13/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 5: When to stop commit?

Recall: we need θ̂i for all identified i?
Recall: LB Alg can “learn” the parameter θ∗?
Answer: Stop if a close estimation is learned.

Yan Dai Variance-Aware Sparse Linear Bandits

13/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 5: When to stop commit?

Recall: we need θ̂i for all identified i?

Recall: LB Alg can “learn” the parameter θ∗?
Answer: Stop if a close estimation is learned.

Yan Dai Variance-Aware Sparse Linear Bandits

13/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 5: When to stop commit?

Recall: we need θ̂i for all identified i?
Recall: LB Alg can “learn” the parameter θ∗?

Answer: Stop if a close estimation is learned.

Yan Dai Variance-Aware Sparse Linear Bandits

13/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 5: When to stop commit?

Recall: we need θ̂i for all identified i?
Recall: LB Alg can “learn” the parameter θ∗?
Answer: Stop if a close estimation is learned.

Yan Dai Variance-Aware Sparse Linear Bandits

14/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 5: When to stop commit?

“Regret-to-Sample-Complexity”: if A’s per-round regret < ∆2, i.e.,

RA
n =

n∑
k=1

⟨θ∗−ak , θ
∗⟩ ≤ n∆2, then θ̂ ≜ 1

n

n∑
k=1

ak satisfies ⟨θ∗−θ̂, θ∗⟩ ≤ ∆2.

So waiting until RA
n ≤ n∆2 gives “good” estimation θ̂.

Yan Dai Variance-Aware Sparse Linear Bandits

14/22

Introduction
Algorithm

Classical Design
Our Design

Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 5: When to stop commit?

“Regret-to-Sample-Complexity”: if A’s per-round regret < ∆2, i.e.,

RA
n =

n∑
k=1

⟨θ∗−ak , θ
∗⟩ ≤ n∆2, then θ̂ ≜ 1

n

n∑
k=1

ak satisfies ⟨θ∗−θ̂, θ∗⟩ ≤ ∆2.

So waiting until RA
n ≤ n∆2 gives “good” estimation θ̂.

Yan Dai Variance-Aware Sparse Linear Bandits

15/22

Introduction
Algorithm

Classical Design
Our Design

Final Algorithm

Algorithm Final Algorithm (Using VA LB Algorithm A)
1: for ∆ = 1

2 ,
1
4 ,

1
8 , . . . (i.e., halve until T rounds) do

2: For each round, put θ̂i on i for all identified i, and use
remaining mass to explore like [Carpentier and Munos, 2012].

3: Terminate until ‘explore” rounds nb
∆ ensures

2

√√√√2
nb
∆∑

k=1

(rk,i − r̄i)2 ln
4
δ
< nb

∆ · ∆
4
, ∀i unidentified,

where rk,i is the k-th estimate of θ∗i and r̄i is the average of all
rk,i ’s. Then mark all i with |r̄i | > ∆ as “identified”.

4: Deploy A on all identified coordinates until “commit” rounds
na
∆ ensures RA

na
∆
< na

∆ ·∆2. Calculate θ̂i for all identified i.

Yan Dai Variance-Aware Sparse Linear Bandits

15/22

Introduction
Algorithm

Classical Design
Our Design

Final Algorithm

Algorithm Final Algorithm (Using VA LB Algorithm A)
1: for ∆ = 1

2 ,
1
4 ,

1
8 , . . . (i.e., halve until T rounds) do

2: For each round, put θ̂i on i for all identified i, and use
remaining mass to explore like [Carpentier and Munos, 2012].

3: Terminate until ‘explore” rounds nb
∆ ensures

2

√√√√2
nb
∆∑

k=1

(rk,i − r̄i)2 ln
4
δ
< nb

∆ · ∆
4
, ∀i unidentified,

where rk,i is the k-th estimate of θ∗i and r̄i is the average of all
rk,i ’s. Then mark all i with |r̄i | > ∆ as “identified”.

4: Deploy A on all identified coordinates until “commit” rounds
na
∆ ensures RA

na
∆
< na

∆ ·∆2. Calculate θ̂i for all identified i.

Yan Dai Variance-Aware Sparse Linear Bandits

15/22

Introduction
Algorithm

Classical Design
Our Design

Final Algorithm

Algorithm Final Algorithm (Using VA LB Algorithm A)
1: for ∆ = 1

2 ,
1
4 ,

1
8 , . . . (i.e., halve until T rounds) do

2: For each round, put θ̂i on i for all identified i, and use
remaining mass to explore like [Carpentier and Munos, 2012].

3: Terminate until ‘explore” rounds nb
∆ ensures

2

√√√√2
nb
∆∑

k=1

(rk,i − r̄i)2 ln
4
δ
< nb

∆ · ∆
4
, ∀i unidentified,

where rk,i is the k-th estimate of θ∗i and r̄i is the average of all
rk,i ’s. Then mark all i with |r̄i | > ∆ as “identified”.

4: Deploy A on all identified coordinates until “commit” rounds
na
∆ ensures RA

na
∆
< na

∆ ·∆2. Calculate θ̂i for all identified i.

Yan Dai Variance-Aware Sparse Linear Bandits

15/22

Introduction
Algorithm

Classical Design
Our Design

Final Algorithm

Algorithm Final Algorithm (Using VA LB Algorithm A)
1: for ∆ = 1

2 ,
1
4 ,

1
8 , . . . (i.e., halve until T rounds) do

2: For each round, put θ̂i on i for all identified i, and use
remaining mass to explore like [Carpentier and Munos, 2012].

3: Terminate until ‘explore” rounds nb
∆ ensures

2

√√√√2
nb
∆∑

k=1

(rk,i − r̄i)2 ln
4
δ
< nb

∆ · ∆
4
, ∀i unidentified,

where rk,i is the k-th estimate of θ∗i and r̄i is the average of all
rk,i ’s. Then mark all i with |r̄i | > ∆ as “identified”.

4: Deploy A on all identified coordinates until “commit” rounds
na
∆ ensures RA

na
∆
< na

∆ ·∆2. Calculate θ̂i for all identified i.

Yan Dai Variance-Aware Sparse Linear Bandits

16/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
.

1 “Explore” Regret:
1 Identified ones contribute regret nb

∆⟨θ∗ − θ̂, θ∗⟩ ≤ nb
∆ ·∆2.

2 Unidentified ones contribute regret nb
∆

∑
i(θ

∗
i)

2 ≤ nb
∆ · s∆2.

2 “Commit” Regret:
1 Identified ones contribute regret RA

na
∆
< na

∆ ·∆2.
2 Unidentified ones contribute regret na

∆

∑
i(θ

∗
i)

2 ≤ na
∆ · s∆2.

3 Conclusion: Total Regret

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
.

Yan Dai Variance-Aware Sparse Linear Bandits

16/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
.

1 “Explore” Regret:
1 Identified ones contribute regret nb

∆⟨θ∗ − θ̂, θ∗⟩ ≤ nb
∆ ·∆2.

2 Unidentified ones contribute regret nb
∆

∑
i(θ

∗
i)

2 ≤ nb
∆ · s∆2.

2 “Commit” Regret:
1 Identified ones contribute regret RA

na
∆
< na

∆ ·∆2.
2 Unidentified ones contribute regret na

∆

∑
i(θ

∗
i)

2 ≤ na
∆ · s∆2.

3 Conclusion: Total Regret

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
.

Yan Dai Variance-Aware Sparse Linear Bandits

16/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
.

1 “Explore” Regret:
1 Identified ones contribute regret nb

∆⟨θ∗ − θ̂, θ∗⟩ ≤ nb
∆ ·∆2.

2 Unidentified ones contribute regret nb
∆

∑
i(θ

∗
i)

2 ≤ nb
∆ · s∆2.

2 “Commit” Regret:
1 Identified ones contribute regret RA

na
∆
< na

∆ ·∆2.
2 Unidentified ones contribute regret na

∆

∑
i(θ

∗
i)

2 ≤ na
∆ · s∆2.

3 Conclusion: Total Regret

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
.

Yan Dai Variance-Aware Sparse Linear Bandits

16/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
.

1 “Explore” Regret:
1 Identified ones contribute regret nb

∆⟨θ∗ − θ̂, θ∗⟩ ≤ nb
∆ ·∆2.

2 Unidentified ones contribute regret nb
∆

∑
i(θ

∗
i)

2 ≤ nb
∆ · s∆2.

2 “Commit” Regret:
1 Identified ones contribute regret RA

na
∆
< na

∆ ·∆2.

2 Unidentified ones contribute regret na
∆

∑
i(θ

∗
i)

2 ≤ na
∆ · s∆2.

3 Conclusion: Total Regret

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
.

Yan Dai Variance-Aware Sparse Linear Bandits

16/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
.

1 “Explore” Regret:
1 Identified ones contribute regret nb

∆⟨θ∗ − θ̂, θ∗⟩ ≤ nb
∆ ·∆2.

2 Unidentified ones contribute regret nb
∆

∑
i(θ

∗
i)

2 ≤ nb
∆ · s∆2.

2 “Commit” Regret:
1 Identified ones contribute regret RA

na
∆
< na

∆ ·∆2.
2 Unidentified ones contribute regret na

∆

∑
i(θ

∗
i)

2 ≤ na
∆ · s∆2.

3 Conclusion: Total Regret

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
.

Yan Dai Variance-Aware Sparse Linear Bandits

16/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
.

1 “Explore” Regret:
1 Identified ones contribute regret nb

∆⟨θ∗ − θ̂, θ∗⟩ ≤ nb
∆ ·∆2.

2 Unidentified ones contribute regret nb
∆

∑
i(θ

∗
i)

2 ≤ nb
∆ · s∆2.

2 “Commit” Regret:
1 Identified ones contribute regret RA

na
∆
< na

∆ ·∆2.
2 Unidentified ones contribute regret na

∆

∑
i(θ

∗
i)

2 ≤ na
∆ · s∆2.

3 Conclusion: Total Regret

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
.

Yan Dai Variance-Aware Sparse Linear Bandits

17/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch (Cont’d)
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
,

and ...

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
,

so ...

RT = Õ(s)E

∑
∆

∆2

 1
∆

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2 +∆−2RA
na
∆

 .

We know ... RA
n = Õ

(
s1.5
√∑na

∆
k=1 σ

2
k + s2

)
[Kim et al., 2022],

and
∑nb

∆
k=1(rk,i − r̄i)

2 ≈
∑nb

∆
k=1 E[(rk,i − r̄i)

2] =
∑nb

∆
k=1(1 + d

∆2σ
2
k).

Yan Dai Variance-Aware Sparse Linear Bandits

17/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch (Cont’d)
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
,

and ...

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
,

so ...

RT = Õ(s)E

∑
∆

∆2

 1
∆

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2 +∆−2RA
na
∆

 .

We know ... RA
n = Õ

(
s1.5
√∑na

∆
k=1 σ

2
k + s2

)
[Kim et al., 2022],

and
∑nb

∆
k=1(rk,i − r̄i)

2 ≈
∑nb

∆
k=1 E[(rk,i − r̄i)

2] =
∑nb

∆
k=1(1 + d

∆2σ
2
k).

Yan Dai Variance-Aware Sparse Linear Bandits

17/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch (Cont’d)
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
,

and ...

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
,

so ...

RT = Õ(s)E

∑
∆

∆2

 1
∆

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2 +∆−2RA
na
∆

 .

We know ... RA
n = Õ

(
s1.5
√∑na

∆
k=1 σ

2
k + s2

)
[Kim et al., 2022],

and
∑nb

∆
k=1(rk,i − r̄i)

2 ≈
∑nb

∆
k=1 E[(rk,i − r̄i)

2] =
∑nb

∆
k=1(1 + d

∆2σ
2
k).

Yan Dai Variance-Aware Sparse Linear Bandits

17/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch (Cont’d)
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
,

and ...

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
,

so ...

RT = Õ(s)E

∑
∆

∆2

 1
∆

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2 +∆−2RA
na
∆

 .

We know ... RA
n = Õ

(
s1.5
√∑na

∆
k=1 σ

2
k + s2

)
[Kim et al., 2022],

and
∑nb

∆
k=1(rk,i − r̄i)

2 ≈
∑nb

∆
k=1 E[(rk,i − r̄i)

2] =
∑nb

∆
k=1(1 + d

∆2σ
2
k).

Yan Dai Variance-Aware Sparse Linear Bandits

18/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch (Cont’d)

So we have ...

RT = Õ(s)E

∑
∆

√√√√ nb

∆∑
k=1

(∆2 + dσ2
k) + s1.5

√√√√ na
∆∑

k=1

σ2
k + s2

 .

Question 7: How to bound
∑

∆

√∑nb
∆

k=1(∆
2 + dσ2

k) ≜
∑

∆

√
S∆?

Answer: Recall
∑

∆ nb
∆ ≤ T and

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2 ≈ ∆−1

√√√√ nb
∆∑

k=1

(
1 +

d
∆2σ

2
k

)
= ∆−2S∆.

In other words, we have
∑

∆∆−2√S∆ ≤ T (and
∆ = 2−1, 2−2, . . .).

Yan Dai Variance-Aware Sparse Linear Bandits

18/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch (Cont’d)

So we have ...

RT = Õ(s)E

∑
∆

√√√√ nb

∆∑
k=1

(∆2 + dσ2
k) + s1.5

√√√√ na
∆∑

k=1

σ2
k + s2

 .

Question 7: How to bound
∑

∆

√∑nb
∆

k=1(∆
2 + dσ2

k) ≜
∑

∆

√
S∆?

Answer: Recall
∑

∆ nb
∆ ≤ T and

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2 ≈ ∆−1

√√√√ nb
∆∑

k=1

(
1 +

d
∆2σ

2
k

)
= ∆−2S∆.

In other words, we have
∑

∆∆−2√S∆ ≤ T (and
∆ = 2−1, 2−2, . . .).

Yan Dai Variance-Aware Sparse Linear Bandits

18/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch (Cont’d)

So we have ...

RT = Õ(s)E

∑
∆

√√√√ nb

∆∑
k=1

(∆2 + dσ2
k) + s1.5

√√√√ na
∆∑

k=1

σ2
k + s2

 .

Question 7: How to bound
∑

∆

√∑nb
∆

k=1(∆
2 + dσ2

k) ≜
∑

∆

√
S∆?

Answer: Recall
∑

∆ nb
∆ ≤ T and

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2 ≈ ∆−1

√√√√ nb
∆∑

k=1

(
1 +

d
∆2σ

2
k

)
= ∆−2S∆.

In other words, we have
∑

∆∆−2√S∆ ≤ T (and
∆ = 2−1, 2−2, . . .).

Yan Dai Variance-Aware Sparse Linear Bandits

19/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch (Cont’d)

So we have ...

RT = Õ(s)E

∑
∆

√√√√ nb

∆∑
k=1

(∆2 + dσ2
k) + s1.5

√√√√ na
∆∑

k=1

σ2
k + s2

 .

Question 7: How to bound
∑

∆

√∑nb
∆

k=1(∆
2 + dσ2

k) ≜
∑

∆

√
S∆?

Answer (Cont’d):
∑

∆∆−2√S∆ ≤ T and ∆ = 2−1, 2−2,
Define a threshold X =

√∑
∆ S∆/T , then:

For ∆2 ≤ X :
∑

∆2≤X
√

S∆ ≤ X
∑

∆2≤X ∆−2√S∆ ≤ TX .
For ∆2 ≥ X :

∑
∆2≥X

√
S∆ ≤ Õ(

√∑
∆ S∆) (#∆ ≤ log2 T).

So ∑∆

√
S∆ = Õ(

√∑
∆ S∆) = Õ(

√∑
∆

∑nb
∆

k=1(∆
2 + dσ2

k))!

Yan Dai Variance-Aware Sparse Linear Bandits

20/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch (Cont’d)

So we have ...

RT = Õ(s)E

∑
∆

√√√√ nb

∆∑
k=1

(∆2 + dσ2
k) + s1.5

√√√√ na
∆∑

k=1

σ2
k + s2

= Õ

s E

√√√√∑

∆

nb
∆∑

k=1

(∆2 + dσ2
k) + s1.5

√√√√∑
∆

na
∆∑

k=1

σ2
k +

∑
∆

s2

= Õ

(s2.5 + s
√

d)

√√√√ T∑
t=1

σ2
t + s3

 . □

Yan Dai Variance-Aware Sparse Linear Bandits

21/22

Introduction
Algorithm

Thank you for listening!

Questions are more than welcomed.

Yan Dai Variance-Aware Sparse Linear Bandits

22/22

Introduction
Algorithm

References

Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. (2012).
Online-to-confidence-set conversions and application to sparse stochastic bandits.
In Artificial Intelligence and Statistics, pages 1–9. PMLR.

Antos, A. and Szepesvári, C. (2009).
Stochastic bandits with large action sets revisited.
Personal communication.

Carpentier, A. and Munos, R. (2012).
Bandit theory meets compressed sensing for high dimensional stochastic linear bandit.
In Artificial Intelligence and Statistics, pages 190–198. PMLR.

Dani, V., Hayes, T. P., and Kakade, S. M. (2008).
Stochastic linear optimization under bandit feedback.
In 21st Annual Conference on Learning Theory, pages 355–366.

Kim, Y., Yang, I., and Jun, K.-S. (2022).
Improved regret analysis for variance-adaptive linear bandits and horizon-free linear mixture mdps.
In Advances in Neural Information Processing Systems 35.

Zhao, H., He, J., Zhou, D., Zhang, T., and Gu, Q. (2023).
Variance-dependent regret bounds for linear bandits and reinforcement learning: Adaptivity and computational efficiency.
arXiv preprint arXiv:2302.10371.

Zhou, D., Gu, Q., and Szepesvari, C. (2021).
Nearly minimax optimal reinforcement learning for linear mixture markov decision processes.
In Conference on Learning Theory, pages 4532–4576. PMLR.

Yan Dai Variance-Aware Sparse Linear Bandits

	Introduction
	Preliminaries
	Related Work

	Algorithm
	Classical Design
	Our Design

	

