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Linear Bandit

A T -round game between an agent and the environment.1

For each round t = 1, 2, . . . ,T , the agent plays an action at
from the unit sphere Sd−1 (our assumption).
For this round, she gains reward r(at) = ⟨at , θ

∗⟩ where
θ∗ ∈ Sd−1 is a fixed but unknown parameter.
She cannot direcly access r(at), but only observes noisy
feedback r(at) + ηt where ηt is a zero-mean random noise.
Typically assume Var(ηt) ≤ 1 for all t.

1Figure from Reinforcement Learning – Multi-Arm Bandit Implementation, Jeremy Zhang.
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Agent’s Goal?

Maximize the (expected) total reward

E

[ T∑
t=1

r(at)

]
= E

[ T∑
t=1

⟨at , θ
∗⟩

]
,

or equivalently, minimize the regret

RT ≜ max
a∈Sd−1

E

[ T∑
t=1

⟨a − at , θ
∗⟩

]
.

= E

[ T∑
t=1

⟨θ∗ − at , θ
∗⟩

]
.
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Sparse Linear Bandit

θ∗ is guaranteed to have only a few non-zero coordinates, i.e.,
s ≜ ∥θ∗∥0 satisfies s ≪ d. However, s is unknown to the agent.

Known Results:
Upper Bound: Õ(

√
sdT ) [Abbasi-Yadkori et al., 2012].

Lower Bound: Ω(
√

dT ) [Antos and Szepesvári, 2009] even
when sparsity factor s = 1 and the action set is Sd−1.
Conclusion: Õ(

√
sdT ) is minimax optimal for SLB.
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Variance-Aware Sparse Linear Bandit?

The noises {ηt}T
t=1 have time-dependent variances. Formally,

ηt ∼ N (0, σ2
t ) where σt ∈ [0, 1] varies with time (and is hidden).

Worst Case (σt ≡ 1): Õ(
√

sdT ) is known to be optimal.
Deterministic case (σt ≡ 0): Divide-and-Conquer gets Õ(s).
In Between? This paper!
Design an algorithm whose regret is variance-aware:

RT = Õ

poly(s)

√√√√d
T∑

t=1
σ2

t + poly(s)

 ,

where σ2
t = Var(ηt) ∈ [0, 1] is the noise variance (σt ’s are all

unknown) and s = ∥θ∗∥0 is the sparsity (s is also unknown).
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poly(s)

√√√√d
T∑

t=1
σ2

t + poly(s)

 ,

where σ2
t = Var(ηt) ∈ [0, 1] is the noise variance (σt ’s are all

unknown) and s = ∥θ∗∥0 is the sparsity (s is also unknown).

Yan Dai Variance-Aware Sparse Linear Bandits



6/22

Introduction
Algorithm

Preliminaries
Related Work

Variance-Aware Sparse Linear Bandit?

The noises {ηt}T
t=1 have time-dependent variances. Formally,

ηt ∼ N (0, σ2
t ) where σt ∈ [0, 1] varies with time (and is hidden).

Worst Case (σt ≡ 1): Õ(
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Related Work
1 “Worst-Case” (σt ≡ 1) Sparse Linear Bandit:

Upper Bound: Õ(
√

sdT ) [Abbasi-Yadkori et al., 2012].
Lower Bound: Ω(

√
dT ) [Antos and Szepesvári, 2009].

2 “Worst-Case” (σt ≡ 1) Linear Bandits (i.e., s = d):
Upper Bound: Õ(d

√
T ) [Dani et al., 2008].

Lower Bound: Ω(d
√

T ) [Dani et al., 2008].
3 “Variance-Aware” Linear Bandits:

Õ(d1.5
√∑

σ2
t + d2) [Kim et al., 2022].

Õ(d
√∑

σ2
t +

√
dT ) [Zhou et al., 2021].

Õ(d
√∑

σ2
t + d) [Zhao et al., 2023] (do not cover).

This paper: convert any VA-LB Alg A to VA-SLB Alg B s.t.:

if A ensures RLB
T = Õ

(
f (d)

√∑
σ2

t + g(d)
)

for some f , g,

then B ensures RSLB
T = Õ

(
(sf (s) + s

√
d)
√∑

σ2
t + sg(s)

)
.
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Classical Design
Our Design

Classical “Explore-then-Commit” Idea
1 Explore: Find coordinates with “large enough” magnitudes.
2 Commit: Play “wisely” on these coordinates (ignore others).

Example [Carpentier and Munos, 2012]:
1 Explore: Identify all i with |θ∗i | = Ω((Ts/d)−1/4) (call this

threshold ∆).Takes N = Õ(∆−2d) = Õ(
√

sdT ) rounds to
make the confidence radius

√
d/n smaller than ∆/2.

2 Commit: For the remaining T − N rounds, execute a linear
bandit algorithm on these coordinates (i.e., only consider an
O(s)-dimensional subspace) and play 0 on the other ones.

Regret Analysis: The regret RT = Õ(
√

sdT ), as:
Exploration causes no more than N = Õ(

√
sdT ) regret.

Commitment on s coordinates has regret Õ(s
√

T ).
Each un-explored coordinate i (which is “small”) incurs regret
≤ T∆2 =

√
dT/s; and there are no more than s such i’s.

Yan Dai Variance-Aware Sparse Linear Bandits
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√

sdT ), as:
Exploration causes no more than N = Õ(
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Generalize to Variance-Aware SLB?

Question 1: How to get
√∑

σ2
t -style regret in “commit”?

Answer: Use variance-aware LB algorithms.

Question 2: How to get
√∑

σ2
t -style regret in “explore”?

1 Worst-Case: Exploration thresold ∆ ∼ T−1/4.
2 Deterministic-Case: Exploration thresold ∆ ∼ 0.

Answer: Decide the “threshold” ∆ adaptively.

Yan Dai Variance-Aware Sparse Linear Bandits
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Our Idea: “Adaptive” Exploration Threshold

Algorithm “Explore-then-Commit” with Adaptive Threshold
1: for ∆ = 1

2 , . . . do
2: Explore: Identify all coordinates with magnitude [∆, 2∆].
3: Commit: Deploy VA LB A on all identified coordinates.
4: Continue: Halve ∆ and repeat.

Question 3: How to do exploration?

Explore all coordinates? Then why halving?
Ignore identified coordinates? Their regret?
Solution: Put estimations on identified (large) coordinates.
Use remaining mass 1 −

∑
θ̂2

i to explore remaining ones.

Yan Dai Variance-Aware Sparse Linear Bandits
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Question 4: When to stop exploration?

Lemma: For common-mean, independent & symmetric {Xi}n
i=1,∣∣X̄ − µ

∣∣ ≤ 1
n

√√√√2
n∑

i=1
(Xi − X̄)2 ln

4
δ

w.p. 1 − δ,

where n < ∞ is stopping time, µ = E[Xi ], and X̄ = 1
n
∑n

i=1 Xi .
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Recall: we need θ̂i for all identified i?
Recall: LB Alg can “learn” the parameter θ∗?
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4: Continue: Halve ∆ and repeat.

Question 5: When to stop commit?

“Regret-to-Sample-Complexity”: if A’s per-round regret < ∆2, i.e.,

RA
n =

n∑
k=1

⟨θ∗−ak , θ
∗⟩ ≤ n∆2, then θ̂ ≜ 1

n

n∑
k=1

ak satisfies ⟨θ∗−θ̂, θ∗⟩ ≤ ∆2.

So waiting until RA
n ≤ n∆2 gives “good” estimation θ̂.
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Algorithm Final Algorithm (Using VA LB Algorithm A)
1: for ∆ = 1

2 ,
1
4 ,

1
8 , . . . (i.e., halve until T rounds) do

2: For each round, put θ̂i on i for all identified i, and use
remaining mass to explore like [Carpentier and Munos, 2012].

3: Terminate until ‘explore” rounds nb
∆ ensures

2

√√√√2
nb
∆∑

k=1

(rk,i − r̄i)2 ln
4
δ
< nb

∆ · ∆
4
, ∀i unidentified,

where rk,i is the k-th estimate of θ∗i and r̄i is the average of all
rk,i ’s. Then mark all i with |r̄i | > ∆ as “identified”.

4: Deploy A on all identified coordinates until “commit” rounds
na
∆ ensures RA

na
∆
< na

∆ ·∆2. Calculate θ̂i for all identified i.
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Analysis Sketch
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
.

1 “Explore” Regret:
1 Identified ones contribute regret nb

∆⟨θ∗ − θ̂, θ∗⟩ ≤ nb
∆ ·∆2.

2 Unidentified ones contribute regret nb
∆

∑
i(θ

∗
i )

2 ≤ nb
∆ · s∆2.

2 “Commit” Regret:
1 Identified ones contribute regret RA

na
∆
< na

∆ ·∆2.
2 Unidentified ones contribute regret na

∆

∑
i(θ

∗
i )

2 ≤ na
∆ · s∆2.

3 Conclusion: Total Regret

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
.
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Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
,

and ...

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
,

so ...

RT = Õ(s)E

∑
∆

∆2

 1
∆

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2 +∆−2RA
na
∆


 .

We know ... RA
n = Õ

(
s1.5
√∑na

∆
k=1 σ

2
k + s2

)
[Kim et al., 2022],

and
∑nb

∆
k=1(rk,i − r̄i)

2 ≈
∑nb

∆
k=1 E[(rk,i − r̄i)

2] =
∑nb

∆
k=1(1 + d

∆2σ
2
k).
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(
s1.5
√∑na

∆
k=1 σ

2
k + s2

)
[Kim et al., 2022],

and
∑nb

∆
k=1(rk,i − r̄i)

2 ≈
∑nb

∆
k=1 E[(rk,i − r̄i)

2] =
∑nb

∆
k=1(1 + d

∆2σ
2
k).

Yan Dai Variance-Aware Sparse Linear Bandits



17/22

Introduction
Algorithm

Classical Design
Our Design

Analysis Sketch (Cont’d)
Recap: For each ∆, nb

∆ and na
∆ are defined as (ignore constants)

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2, na
∆ ≈ ∆−2RA

na
∆
,

and ...

RT = O

(
E

[∑
∆

s∆2(nb
∆ + na

∆)

])
,

so ...

RT = Õ(s)E

∑
∆

∆2

 1
∆

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2 +∆−2RA
na
∆


 .

We know ... RA
n = Õ
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So we have ...

RT = Õ(s)E

∑
∆


√√√√ nb

∆∑
k=1

(∆2 + dσ2
k) + s1.5

√√√√ na
∆∑

k=1

σ2
k + s2


 .

Question 7: How to bound
∑

∆

√∑nb
∆

k=1(∆
2 + dσ2

k) ≜
∑

∆

√
S∆?

Answer: Recall
∑

∆ nb
∆ ≤ T and

nb
∆ ≈ ∆−1

√√√√ nb
∆∑

k=1

(rk,i − r̄i)2 ≈ ∆−1

√√√√ nb
∆∑

k=1

(
1 +

d
∆2σ

2
k

)
= ∆−2S∆.

In other words, we have
∑

∆∆−2√S∆ ≤ T (and
∆ = 2−1, 2−2, . . .).
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So we have ...

RT = Õ(s)E

∑
∆


√√√√ nb

∆∑
k=1

(∆2 + dσ2
k) + s1.5

√√√√ na
∆∑

k=1

σ2
k + s2


 .

Question 7: How to bound
∑

∆

√∑nb
∆

k=1(∆
2 + dσ2

k) ≜
∑

∆

√
S∆?

Answer (Cont’d):
∑

∆∆−2√S∆ ≤ T and ∆ = 2−1, 2−2, . . ..
Define a threshold X =

√∑
∆ S∆/T , then:

For ∆2 ≤ X :
∑

∆2≤X
√

S∆ ≤ X
∑

∆2≤X ∆−2√S∆ ≤ TX .
For ∆2 ≥ X :

∑
∆2≥X

√
S∆ ≤ Õ(

√∑
∆ S∆) (#∆ ≤ log2 T ).

So ∑∆

√
S∆ = Õ(

√∑
∆ S∆) = Õ(

√∑
∆

∑nb
∆

k=1(∆
2 + dσ2

k))!
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So we have ...

RT = Õ(s)E

∑
∆


√√√√ nb

∆∑
k=1

(∆2 + dσ2
k) + s1.5

√√√√ na
∆∑

k=1

σ2
k + s2




= Õ

s E


√√√√∑

∆

nb
∆∑

k=1

(∆2 + dσ2
k) + s1.5

√√√√∑
∆

na
∆∑

k=1

σ2
k +

∑
∆

s2




= Õ

(s2.5 + s
√

d)

√√√√ T∑
t=1

σ2
t + s3

 . □
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Thank you for listening!

Questions are more than welcomed.
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