

Variance-Aware Sparse Linear Bandits

Yan Dai¹, Ruosong Wang², Simon S. Du²

¹ Institute for Interdisciplinary Information Sciences, Tsinghua University
² Paul G. Allen School of Computer Science & Engineering, University of Washington

Presented by Yan Dai

• A *T*-round game between an *agent* and an *environment* with **heteroscedastic noises**

- A *T*-round game between an *agent* and an *environment* with **heteroscedastic noises**
- In round t, agent picks <u>action</u> a_t from d-dim unit sphere \mathbb{S}^{d-1} and <u>observes</u> $r(a_t) + \eta_t$: $r(a_t) = \langle a_t, \theta^* \rangle$, $\eta_t \sim \mathcal{N}(0, \sigma_t^2)$, both θ^* and $\{\sigma_t^2\}_{t=1}^T$ are unknown

- A *T*-round game between an <u>agent</u> and an <u>environment</u> with heteroscedastic noises
- In round t, agent picks <u>action</u> a_t from d-dim unit sphere \mathbb{S}^{d-1} and <u>observes</u> $r(a_t) + \eta_t$: $r(a_t) = \langle a_t, \theta^* \rangle$, $\eta_t \sim \mathcal{N}(0, \sigma_t^2)$, both θ^* and $\{\sigma_t^2\}_{t=1}^T$ are unknown
- Assumption (Sparsity): $\|\theta^*\|_0 = s \ll d$. However, *s* is also unknown.

- A *T*-round game between an <u>agent</u> and an <u>environment</u> with heteroscedastic noises
- In round t, agent picks <u>action</u> a_t from d-dim unit sphere \mathbb{S}^{d-1} and <u>observes</u> $r(a_t) + \eta_t$: $r(a_t) = \langle a_t, \theta^* \rangle$, $\eta_t \sim \mathcal{N}(0, \sigma_t^2)$, both θ^* and $\{\sigma_t^2\}_{t=1}^T$ are **unknown**
- Assumption (Sparsity): $\|\theta^*\|_0 = s \ll d$. However, *s* is also unknown.
- **Objective**: Minimize <u>regret</u> $\Re_T = \mathbb{E}[\sum_{t=1}^T \langle \theta^* a_t, \theta^* \rangle]$ (assuming $\theta^* \in \mathbb{S}^{d-1}$)

- A *T*-round game between an <u>agent</u> and an <u>environment</u> with heteroscedastic noises
- In round t, agent picks <u>action</u> a_t from d-dim unit sphere \mathbb{S}^{d-1} and <u>observes</u> $r(a_t) + \eta_t$: $r(a_t) = \langle a_t, \theta^* \rangle$, $\eta_t \sim \mathcal{N}(0, \sigma_t^2)$, both θ^* and $\{\sigma_t^2\}_{t=1}^T$ are **unknown**
- Assumption (Sparsity): $\|\theta^*\|_0 = s \ll d$. However, *s* is also unknown.
- **Objective**: Minimize <u>regret</u> $\Re_T = \mathbb{E}[\sum_{t=1}^T \langle \theta^* a_t, \theta^* \rangle]$ (assuming $\theta^* \in \mathbb{S}^{d-1}$)

	Setting	Regret
Abbasi-Yadkori et al. (2012)	Sparse Linear Bandit with $\sigma_t \equiv 1$	$\tilde{\mathcal{O}}(\sqrt{sdT})$
This paper	Sparse Linear Bandit with varying σ_t	$\tilde{\mathcal{O}}\left(\left(s^{2.5} + s\sqrt{d}\right)\sqrt{\sum_{t=1}^{T}\sigma_t^2} + s^3\right)$

Table 1: Comparison with Related Work; \tilde{O} hides all logarithmic factors in *s*, *d*, and *T*

- A *T*-round game between an <u>agent</u> and an <u>environment</u> with heteroscedastic noises
- In round t, agent picks <u>action</u> a_t from d-dim unit sphere \mathbb{S}^{d-1} and <u>observes</u> $r(a_t) + \eta_t$: $r(a_t) = \langle a_t, \theta^* \rangle$, $\eta_t \sim \mathcal{N}(0, \sigma_t^2)$, both θ^* and $\{\sigma_t^2\}_{t=1}^T$ are **unknown**
- Assumption (Sparsity): $\|\theta^*\|_0 = s \ll d$. However, *s* is also unknown.
- **Objective**: Minimize <u>regret</u> $\Re_T = \mathbb{E}[\sum_{t=1}^T \langle \theta^* a_t, \theta^* \rangle]$ (assuming $\theta^* \in \mathbb{S}^{d-1}$)

	Setting	Regret
Abbasi-Yadkori et al. (2012)	Sparse Linear Bandit with $\sigma_t \equiv 1$	$\tilde{\mathcal{O}}(\sqrt{sdT})$
Dong et al. (2021)	Sparse Linear Bandit with $\sigma_t \equiv 0$	$ ilde{\mathcal{O}}(s)$
This paper	Sparse Linear Bandit with varying σ_t	$\tilde{\mathcal{O}}\left(\left(s^{2.5} + s\sqrt{d}\right)\sqrt{\sum_{t=1}^{T}\sigma_t^2} + s^3\right)$

Table 1: Comparison with Related Work; \tilde{O} hides all logarithmic factors in *s*, *d*, and *T*

- A *T*-round game between an <u>agent</u> and an <u>environment</u> with heteroscedastic noises
- In round t, agent picks <u>action</u> a_t from d-dim unit sphere \mathbb{S}^{d-1} and <u>observes</u> $r(a_t) + \eta_t$: $r(a_t) = \langle a_t, \theta^* \rangle$, $\eta_t \sim \mathcal{N}(0, \sigma_t^2)$, both θ^* and $\{\sigma_t^2\}_{t=1}^T$ are **unknown**
- Assumption (Sparsity): $\|\theta^*\|_0 = s \ll d$. However, *s* is also unknown.
- **Objective**: Minimize <u>regret</u> $\Re_T = \mathbb{E}[\sum_{t=1}^T \langle \theta^* a_t, \theta^* \rangle]$ (assuming $\theta^* \in \mathbb{S}^{d-1}$)

	Setting	Regret
Abbasi-Yadkori et al. (2012)	Sparse Linear Bandit with $\sigma_t \equiv 1$	$\tilde{\mathcal{O}}(\sqrt{sdT})$
Dong et al. (2021)	Sparse Linear Bandit with $\sigma_t \equiv 0$	$\tilde{\mathcal{O}}(s)$
This paper	Sparse Linear Bandit with varying σ_t	$\tilde{\mathcal{O}}\left(\left(s^{2.5} + s\sqrt{d}\right)\sqrt{\sum_{t=1}^{T}\sigma_t^2} + s^3\right)$

Table 1: Comparison with Related Work; \tilde{O} hides all logarithmic factors in *s*, *d*, and *T*

- A *T*-round game between an <u>agent</u> and an <u>environment</u> with **heteroscedastic noises**
- In round *t*, agent picks <u>action</u> a_t from *d*-dim unit sphere \mathbb{S}^{d-1} and <u>observes</u> $r(a_t) + \eta_t$: $r(a_t) = \langle a_t, \theta^* \rangle$, $\eta_t \sim \mathcal{N}(0, \sigma_t^2)$, both θ^* and $\{\sigma_t^2\}_{t=1}^T$ are **unknown**
- Assumption (Sparsity): $\|\theta^*\|_0 = s \ll d$. However, *s* is also unknown.
- **Objective**: Minimize <u>regret</u> $\Re_T = \mathbb{E}[\sum_{t=1}^T \langle \theta^* a_t, \theta^* \rangle]$ (assuming $\theta^* \in \mathbb{S}^{d-1}$)

 $\tilde{\mathcal{O}}(\operatorname{poly}(s)\sqrt{dT})$

when $\sigma_{1} = 1$

Table 1: Comparison with Related Work; \tilde{O} hides all logarithmic factors in *s*, *d*, and *T*

$\widetilde{\mathcal{O}}($	(po	ly((s))
wł	nen	σ_t	\equiv	0

11011				- L
		Setting	Regret	
	Abbasi-Yadkori et al. (2012)	Sparse Linear Bandit with $\sigma_t \equiv 1$	$\tilde{\mathcal{O}}(\sqrt{sdT})$	
(Dong et al. (2021)	Sparse Linear Bandit with $\sigma_t \equiv 0$	$ ilde{\mathcal{O}}(s)$	
	This paper	Sparse Linear Bandit with varying σ_t	$\tilde{\mathcal{O}}\left(\left(s^{2.5} + s\sqrt{d}\right)\sqrt{\sum_{t=1}^{T}\sigma_t^2} + s^3\right)$	

More Importantly...

\approx	(·				1
\mathcal{O}	po	V	(S)	1	dT
	(Г -	5			

Table 1: Comparison with Related Work; \tilde{O} hides all logarithmic factors in *s*, *d*, and *T*

 $\tilde{O}(\operatorname{poly}(s))$ when $\sigma_t \equiv 0$

when	$\sigma_t \equiv 1$ Table 1: Com	parison with Related Work; $\tilde{\mathcal{O}}$ hides all logarithmic f	factors in <i>s</i> , <i>d</i> , and <i>T</i> when	$\sigma_t \equiv$
		Setting	Regret	
	Abbasi-Yadkori et al. (2012)	Sparse Linear Bandit with $\sigma_t \equiv 1$	$ ilde{\mathcal{O}}(\sqrt{sdT})$	
	Dong et al. (2021)	Sparse Linear Bandit with $\sigma_t \equiv 0$	$ ilde{\mathcal{O}}(s)$	
	This paper	Sparse Linear Bandit with varying σ_t	$\tilde{\mathcal{O}}\left(\left(s^{2.5} + s\sqrt{d}\right)\sqrt{\sum_{t=1}^{T}\sigma_t^2} + s^3\right)$	

More Importantly...

Main Theorem (informal). For any <u>variance-aware linear bandit algorithm</u> \mathcal{A} whose regret $\mathfrak{R}_T^{\mathcal{A}}$ satisfies

$$\Re_T^{\mathcal{A}} = \tilde{\mathcal{O}}\left(f(d)\sqrt{\sum\sigma_t^2} + g(d)\right)$$
 for some functions $f, g,$

our framework gives a variance-aware sparse linear bandit algorithm \mathcal{B} whose regret $\mathfrak{R}_T^{\mathcal{B}}$ satisfies

 $\Re_T^{\mathcal{B}} = \tilde{\mathcal{O}}\left((sf(s) + s\sqrt{d})\sqrt{\sum \sigma_t^2} + sg(s)\right), \text{ giving } \tilde{\mathcal{O}}\left(\text{poly}(s)\sqrt{dT}\right) \text{ when } \sigma_t \equiv 1 \text{ and } \tilde{\mathcal{O}}\left(\text{poly}(s)\right) \text{ when } \sigma_t \equiv 0.$

 $\tilde{O}(\operatorname{poly}(s)\sqrt{dT})$

Table 1: Comparison with Related Work; \tilde{O} hides all logarithmic factors in *s*, *d*, and *T*

 $\tilde{\mathcal{O}}(\operatorname{poly}(s))$ when $\sigma_t \equiv 0$

when	$\sigma_t \equiv 1$ Table 1. Com	Setting	Regret	$ \sigma_t $
	Abbasi-Yadkori et al. (2012)	Sparse Linear Bandit with $\sigma_t \equiv 1$	$\tilde{\mathcal{O}}(\sqrt{sdT})$	
	Dong et al. (2021)	Sparse Linear Bandit with $\sigma_t \equiv 0$	$ ilde{\mathcal{O}}(s)$	
	This paper	Sparse Linear Bandit with varying σ_t	$\tilde{\mathcal{O}}\left(\left(s^{2.5} + s\sqrt{d}\right)\sqrt{\sum_{t=1}^{T}\sigma_t^2} + s^3\right)$	

More Importantly...

Main Theorem (informal). For any <u>variance-aware linear bandit algorithm</u> \mathcal{A} whose regret $\mathfrak{R}_T^{\mathcal{A}}$ satisfies

$$\Re_T^{\mathcal{A}} = \tilde{\mathcal{O}}\left(f(d)\sqrt{\sum\sigma_t^2} + g(d)\right)$$
 for some functions $f, g,$

our framework gives a variance-aware sparse linear bandit algorithm \mathcal{B} whose regret $\mathfrak{R}_T^{\mathcal{B}}$ satisfies

 $\Re_T^{\mathcal{B}} = \tilde{\mathcal{O}}\left((sf(s) + s\sqrt{d})\sqrt{\sum \sigma_t^2} + sg(s)\right), \text{ giving } \tilde{\mathcal{O}}\left(\text{poly}(s)\sqrt{dT}\right) \text{ when } \sigma_t \equiv 1 \text{ and } \tilde{\mathcal{O}}\left(\text{poly}(s)\right) \text{ when } \sigma_t \equiv 0.$

 $\tilde{O}(\operatorname{poly}(s)\sqrt{dT})$

Table 1: Comparison with Related Work; \tilde{O} hides all logarithmic factors in *s*, *d*, and *T*

 $\tilde{\mathcal{O}}(\operatorname{poly}(s))$ when $\sigma_t \equiv 0$

when	$\sigma_t \equiv 1$ Table 1: Com	parison with Related Work; \mathcal{O} hides all logarithmic f	actors in s, d , and T when	$\sigma_t \equiv$
		Setting	Regret	
	Abbasi-Yadkori et al. (2012)	Sparse Linear Bandit with $\sigma_t \equiv 1$	$\tilde{\mathcal{O}}(\sqrt{sdT})$	
	Dong et al. (2021)	Sparse Linear Bandit with $\sigma_t \equiv 0$	$ ilde{\mathcal{O}}(s)$	
	This paper (Using Kim et al. (2022))	Sparse Linear Bandit with varying σ_t	$\tilde{\mathcal{O}}\left(\left(s^{2.5} + s\sqrt{d}\right)\sqrt{\sum_{t=1}^{T}\sigma_t^2} + s^3\right)$	
	Kim et al. (2022)	Linear Bandit (i.e., $s = d$) with varying σ_t	$\tilde{\mathcal{O}}\left(d^{1.5}\sqrt{\sum_{t=1}^{T}\sigma_{t}^{2}}+d^{2}\right)$	

Thank You for Listening! Email: yan-dai20@mails.tsinghua.edu.cn

References

- Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-Confidence-Set Conversions and Application to Sparse Stochastic Bandits. In Artificial Intelligence and Statistics, pp. 1–9. PMLR, 2012.
- •Kefan Dong, Jiaqi Yang, and Tengyu Ma. Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve Optimism, Embrace Virtual Curvature. Advances in Neural Information Processing Systems, 34, 2021.
- Yeoneung Kim, Insoon Yang, and Kwang-Sung Jun. Improved Regret Analysis for Variance-Adaptive Linear Bandits and Horizon-Free Linear Mixture MDPs. Advances in Neural Information Processing Systems, 2022, 35: 1060-1072. 2022.