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Motivative Setting: 
Delayed Adversarial MAB
• Delays (𝑑!, 𝑑", … , 𝑑#) are chosen before-hand,

but are kept unknown to the agent at all time

• Loss vectors 𝑙!, 𝑙", … , 𝑙# are adversarial chosen,
but all entries are 0,1 -bounded (i.e., 𝑙$ ∈ 0,1 %)

• Agent picks action 𝐴$ at each round 𝑡 = 1,2, … , 𝑇,
but only observes (𝑡, 𝑙$,%!) at the end of round 𝑡 + 𝑑$

• Optimal regret achieved by Zimmert et al. (2020):
𝑂 𝐾𝑇 + 𝐷 log𝐾 .
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Motivation of Our Work

• Delay model easily generalize to other problems
• Linear bandits
• Combinatorial bandits
• …

• Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020). 
• 𝑂( 𝐾𝑇 + 𝐷 log𝐾) optimal regret already achieved
• But... crucially depend on negative-entropy regularizer
• Also task specific — not generalize to other problems

• Want a universal approach to handle delays robustly!
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Classical Framework: OMD 

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays



Classical Framework: OMD 

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays



Classical Framework: OMD 

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays



Classical Framework: OMD 

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays



Classical Framework: OMD 

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays



Classical Framework: OMD 

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays



Classical Framework: OMD 

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays



Classical Framework: OMD 

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays
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• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!
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Main Theorem of Banker-OMD

• Given a practical algorithm based on vanilla OMD 
with 𝒪(𝐶 𝑇) regret for non-delayed adversarial 
bandit problem, there is a Banker-OMD based 
version using the same regularizer, guaranteeing

𝒪 𝐶 𝑇 + 𝐶+ 𝐷 log𝐷
regret in the delayed-feedback setting.

• Non-delayed Algorithm ≈ OMD + 
Regularizer + Step-sizes

• Delay-robust Algorithm ≈ Banker-OMD+ 
Same regularizer + Modified step-sizes
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New Results of 
Banker-OMD

• BOLO (Abernethy et al., 2008) ensures regret
𝑂 𝑛!./ 𝑇 log 𝑇

for 𝑛-dim adversarial linear bandits.

• Banker-BOLO (Ours) ensures regret
𝒪 𝑛!./ log 𝑇 𝑇 + 𝐷 log𝐷 + 𝑛" 𝐷 log 𝑇

for 𝑛-dim delayed adversarial linear bandits.

• State-of-the-art regret bound
for non-delayed scale-free MABs (Ours):

𝒪 𝐾𝑇𝐿 log 𝑇 + 𝐿 log 𝐿 .

• Banker version regret bound
for         delayed scale-free MABs (Ours):

X𝑂 𝐾 𝐷 + 𝑇 𝐿 .
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The End

• Thank for listening!
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