
Banker Online Mirror Descent
— A Universal Approach for Delayed Online Bandit Learning

Jiatai Huang *

Tsinghua University

hjt18@mails.tsinghua.edu.cn

Longbo Huang

Tsinghua University

longbohuang@tsinghua.edu.cn

Yan Dai *

Tsinghua University

yan-dai20@mails.tsinghua.edu.cn

[*]: Equal contribution.

Motivative Setting:
Delayed Adversarial MAB
• Delays (𝑑!, 𝑑", … , 𝑑#) are chosen before-hand,

but are kept unknown to the agent at all time

• Loss vectors 𝑙!, 𝑙", … , 𝑙# are adversarial chosen,
but all entries are 0,1 -bounded (i.e., 𝑙$ ∈ 0,1 %)

• Agent picks action 𝐴$ at each round 𝑡 = 1,2, … , 𝑇,
but only observes (𝑡, 𝑙$,%!) at the end of round 𝑡 + 𝑑$

• Optimal regret achieved by Zimmert et al. (2020):
𝑂 𝐾𝑇 + 𝐷 log𝐾 .

Motivative Setting:
Delayed Adversarial MAB
• Delays (𝑑!, 𝑑", … , 𝑑#) are chosen before-hand,

but are kept unknown to the agent at all time

• Loss vectors 𝑙!, 𝑙", … , 𝑙# are adversarial chosen,
but all entries are 0,1 -bounded (i.e., 𝑙$ ∈ 0,1 %)

• Agent picks action 𝐴$ at each round 𝑡 = 1,2, … , 𝑇,
but only observes (𝑡, 𝑙$,%!) at the end of round 𝑡 + 𝑑$

• Optimal regret achieved by Zimmert et al. (2020):
𝑂 𝐾𝑇 + 𝐷 log𝐾 .

Motivative Setting:
Delayed Adversarial MAB
• Delays (𝑑!, 𝑑", … , 𝑑#) are chosen before-hand,

but are kept unknown to the agent at all time

• Loss vectors 𝑙!, 𝑙", … , 𝑙# are adversarial chosen,
but all entries are 0,1 -bounded (i.e., 𝑙$ ∈ 0,1 %)

• Agent picks action 𝐴$ at each round 𝑡 = 1,2, … , 𝑇,
but only observes (𝑡, 𝑙$,%!) at the end of round 𝑡 + 𝑑$

• Optimal regret achieved by Zimmert et al. (2020):
𝑂 𝐾𝑇 + 𝐷 log𝐾 .

Motivative Setting:
Delayed Adversarial MAB
• Delays (𝑑!, 𝑑", … , 𝑑#) are chosen before-hand,

but are kept unknown to the agent at all time

• Loss vectors 𝑙!, 𝑙", … , 𝑙# are adversarial chosen,
but all entries are 0,1 -bounded (i.e., 𝑙$ ∈ 0,1 %)

• Agent picks action 𝐴$ at each round 𝑡 = 1,2, … , 𝑇,
but only observes (𝑡, 𝑙$,%!) at the end of round 𝑡 + 𝑑$

• Optimal regret achieved by Zimmert et al. (2020):
𝑂 𝐾𝑇 + 𝐷 log𝐾 .

Motivative Setting:
Delayed Adversarial MAB
• Delays (𝑑!, 𝑑", … , 𝑑#) are chosen before-hand,

but are kept unknown to the agent at all time

• Loss vectors 𝑙!, 𝑙", … , 𝑙# are adversarial chosen,
but all entries are 0,1 -bounded (i.e., 𝑙$ ∈ 0,1 %)

• Agent picks action 𝐴$ at each round 𝑡 = 1,2, … , 𝑇,
but only observes (𝑡, 𝑙$,%!) at the end of round 𝑡 + 𝑑$

• Optimal regret achieved by Zimmert et al. (2020):
𝑂 𝐾𝑇 + 𝐷 log𝐾 .

Motivation of Our Work

• Delay model easily generalize to other problems
• Linear bandits
• Combinatorial bandits
• …

• Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
• 𝑂(𝐾𝑇 + 𝐷 log𝐾) optimal regret already achieved
• But... crucially depend on negative-entropy regularizer
• Also task specific — not generalize to other problems

• Want a universal approach to handle delays robustly!

Motivation of Our Work

• Delay model easily generalize to other problems
• Linear bandits
• Combinatorial bandits
• …

• Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
• 𝑂(𝐾𝑇 + 𝐷 log𝐾) optimal regret already achieved
• But... crucially depend on negative-entropy regularizer
• Also task specific — not generalize to other problems

• Want a universal approach to handle delays robustly!

Motivation of Our Work

• Delay model easily generalize to other problems
• Linear bandits
• Combinatorial bandits
• …

• Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
• 𝑂(𝐾𝑇 + 𝐷 log𝐾) optimal regret already achieved
• But... crucially depend on negative-entropy regularizer
• Also task specific — not generalize to other problems

• Want a universal approach to handle delays robustly!

Motivation of Our Work

• Delay model easily generalize to other problems
• Linear bandits
• Combinatorial bandits
• …

• Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
• 𝑂(𝐾𝑇 + 𝐷 log𝐾) optimal regret already achieved
• But... crucially depend on negative-entropy regularizer
• Also task specific — not generalize to other problems

• Want a universal approach to handle delays robustly!

Motivation of Our Work

• Delay model easily generalize to other problems
• Linear bandits
• Combinatorial bandits
• …

• Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
• 𝑂(𝐾𝑇 + 𝐷 log𝐾) optimal regret already achieved
• But... crucially depend on negative-entropy regularizer
• Also task specific — not generalize to other problems

• Want a universal approach to handle delays robustly!

Motivation of Our Work

• Delay model easily generalize to other problems
• Linear bandits
• Combinatorial bandits
• …

• Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
• 𝑂(𝐾𝑇 + 𝐷 log𝐾) optimal regret already achieved
• But... crucially depend on negative-entropy regularizer
• Also task specific — not generalize to other problems

• Want a universal approach to handle delays robustly!

Motivation of Our Work

• Delay model easily generalize to other problems
• Linear bandits
• Combinatorial bandits
• …

• Mostly studied on MABs (Bistritz et al., 2019; Thune et al., 2019; Zimmert et al., 2020).
• 𝑂(𝐾𝑇 + 𝐷 log𝐾) optimal regret already achieved
• But... crucially depend on negative-entropy regularizer
• Also task specific — not generalize to other problems

• Want a universal approach to handle delays robustly!

Classical Framework: OMD

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays

Classical Framework: OMD

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays

Classical Framework: OMD

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays

Classical Framework: OMD

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays

Classical Framework: OMD

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays

Classical Framework: OMD

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays

Classical Framework: OMD

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays

Classical Framework: OMD

• Online Mirror Descent (OMD)
• Solves many online learning problems
• …… and their bandit-feedback versions
• ………… and their adversarial-loss versions
• OMD Algorithm ≈ Regularizer + Step-sizes:

𝑥$'! = arg min
(∈%

𝜂⟨@𝑙$, 𝑥⟩ + D*(𝑥, 𝑥$) , ∀𝑡.

• “Greedily pick an action w.r.t. estimated loss, while keeping close to the last step”

• Sadly, vanilla OMD cannot handle delays

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ!

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ!

𝑥"

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥"

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥" 𝑤"
Mirror Map ∇Ψ

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥" 𝑤"

𝑤"# = 𝑤" + 𝜂*𝑙"

Mirror Map ∇Ψ

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥" 𝑤"

𝑤"# = 𝑤" + 𝜂*𝑙"
𝑥$

Mirror Map ∇Ψ

Inverse Mirror Map
∇,Ψ∗

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥" 𝑤"

𝑤"# = 𝑤" + 𝜂*𝑙"
𝑥$

Mirror Map ∇Ψ

Inverse Mirror Map
∇,Ψ∗

𝑤$

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥" 𝑤"

𝑤"# = 𝑤" + 𝜂*𝑙"
𝑥$

Mirror Map ∇Ψ

Inverse Mirror Map
∇,Ψ∗

𝑤$

𝑤$# = 𝑤$ + 𝜂*𝑙$

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥" 𝑤"

𝑤"# = 𝑤" + 𝜂*𝑙"
𝑥$

Mirror Map ∇Ψ

Inverse Mirror Map
∇,Ψ∗

𝑤$

𝑤$# = 𝑤$ + 𝜂*𝑙$
𝑥&

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥" 𝑤"

𝑤"# = 𝑤" + 𝜂*𝑙"
𝑥$

Mirror Map ∇Ψ

Inverse Mirror Map
∇,Ψ∗

𝑤$

𝑤$# = 𝑤$ + 𝜂*𝑙$
𝑥&

…
…

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥" 𝑤"

𝑤"# = 𝑤" + 𝜂*𝑙"
𝑥$

Mirror Map ∇Ψ

Inverse Mirror Map
∇,Ψ∗

𝑤$

𝑤$# = 𝑤$ + 𝜂*𝑙$
𝑥&

…
…

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥" 𝑤"

𝑤"# = 𝑤" + 𝜂*𝑙"
𝑥$

Mirror Map ∇Ψ

Inverse Mirror Map
∇,Ψ∗

𝑤$

𝑤$# = 𝑤$ + 𝜂*𝑙$
𝑥&

…
…

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Primal Space Δ! Dual Space ℝ!

𝑥" 𝑤"

𝑤"# = 𝑤" + 𝜂*𝑙"
𝑥$

Mirror Map ∇Ψ

Inverse Mirror Map
∇,Ψ∗

𝑤$

𝑤$# = 𝑤$ + 𝜂*𝑙$
𝑥&

…
…

Vanilla OMD
• Single-step OMD lemma:

𝑥" − 𝑦, %𝑙" ≤ 𝜂#$𝐷% 𝑦, 𝑥" − 𝜂#$𝐷% 𝑦, ∇+Ψ∗ 𝑤'
" + 𝜂#$𝐷%∗ 𝑤"', 𝑤" .

Banker-OMD

• A novel framework, generalizing vanilla OMD

• No assumptions on feedback delays and arrival order
• No words like “feedback of last action”

• No assumptions on monotonicity of learning rates

• Why Banker?
• Fine-grained analysis of potential terms due to OMD

steps

Banker-OMD

• A novel framework, generalizing vanilla OMD

• No assumptions on feedback delays and arrival order
• No words like “feedback of last action”

• No assumptions on monotonicity of learning rates

• Why Banker?
• Fine-grained analysis of potential terms due to OMD

steps

Banker-OMD

• A novel framework, generalizing vanilla OMD

• No assumptions on feedback delays and arrival order
• No words like “feedback of last action”

• No assumptions on monotonicity of learning rates

• Why Banker?
• Fine-grained analysis of potential terms due to OMD

steps

Banker-OMD

• A novel framework, generalizing vanilla OMD

• No assumptions on feedback delays and arrival order
• No words like “feedback of last action”

• No assumptions on monotonicity of learning rates

• Why Banker?
• Fine-grained analysis of potential terms due to OMD

steps

Banker-OMD

• A novel framework, generalizing vanilla OMD

• No assumptions on feedback delays and arrival order
• No words like “feedback of last action”

• No assumptions on monotonicity of learning rates

• Why Banker?
• Fine-grained analysis of potential terms due to OMD

steps

Banker-OMD

• A novel framework, generalizing vanilla OMD

• No assumptions on feedback delays and arrival order
• No words like “feedback of last action”

• No assumptions on monotonicity of learning rates

• Why Banker?
• Fine-grained analysis of potential terms due to OMD

steps

Banker-OMD

• A novel framework, generalizing vanilla OMD

• No assumptions on feedback delays and arrival order
• No words like “feedback of last action”

• No assumptions on monotonicity of learning rates

• Why Banker?
• Fine-grained analysis of potential terms due to OMD

steps

High-Level Ideas of Banker-OMD
• Calculate 𝑤$+ after feedback arrives

• Step-dependent learning rate 𝜂$ = 𝜎$,!
• 𝜎" “action scale”

• Single-step OMD lemma still holds:
𝑥$ − 𝑦, @𝑙$ ≤ 𝜎$𝐷* 𝑦, 𝑥$ − 𝜎$𝐷* 𝑦, ∇JΨ∗ 𝑤+

$ + 𝜎$𝐷*∗ 𝑤$+, 𝑤$.

High-Level Ideas of Banker-OMD
• Calculate 𝑤$+ after feedback arrives

• Step-dependent learning rate 𝜂$ = 𝜎$,!
• 𝜎" “action scale”

• Single-step OMD lemma still holds:
𝑥$ − 𝑦, @𝑙$ ≤ 𝜎$𝐷* 𝑦, 𝑥$ − 𝜎$𝐷* 𝑦, ∇JΨ∗ 𝑤+

$ + 𝜎$𝐷*∗ 𝑤$+, 𝑤$.

High-Level Ideas of Banker-OMD
• Calculate 𝑤$+ after feedback arrives

• Step-dependent learning rate 𝜂$ = 𝜎$,!
• 𝜎" “action scale”

• Single-step OMD lemma still holds:
𝑥$ − 𝑦, @𝑙$ ≤ 𝜎$𝐷* 𝑦, 𝑥$ − 𝜎$𝐷* 𝑦, ∇JΨ∗ 𝑤+

$ + 𝜎$𝐷*∗ 𝑤$+, 𝑤$.

High-Level Ideas of Banker-OMD
• Calculate 𝑤$+ after feedback arrives

• Step-dependent learning rate 𝜂$ = 𝜎$,!
• 𝜎" “action scale”

• Single-step OMD lemma still holds:
𝑥$ − 𝑦, @𝑙$ ≤ 𝜎$𝐷* 𝑦, 𝑥$ − 𝜎$𝐷* 𝑦, ∇JΨ∗ 𝑤+

$ + 𝜎$𝐷*∗ 𝑤$+, 𝑤$.

High-Level Ideas of Banker-OMD
• Calculate 𝑤$+ after feedback arrives

• Step-dependent learning rate 𝜂$ = 𝜎$,!
• 𝜎" “action scale”

• Single-step OMD lemma still holds:
𝑥$ − 𝑦, @𝑙$ ≤ 𝜎$𝐷* 𝑦, 𝑥$ − 𝜎$𝐷* 𝑦, ∇JΨ∗ 𝑤+

$ + 𝜎$𝐷*∗ 𝑤$+, 𝑤$.

Primal Space Δ! Dual Space ℝ!

High-Level Ideas of Banker-OMD
• Calculate 𝑤$+ after feedback arrives

• Step-dependent learning rate 𝜂$ = 𝜎$,!
• 𝜎" “action scale”

• Single-step OMD lemma still holds:
𝑥$ − 𝑦, @𝑙$ ≤ 𝜎$𝐷* 𝑦, 𝑥$ − 𝜎$𝐷* 𝑦, ∇JΨ∗ 𝑤+

$ + 𝜎$𝐷*∗ 𝑤$+, 𝑤$.

Primal Space Δ! Dual Space ℝ!

𝑤'!
#

𝑤'"
#

𝑤'#
#

High-Level Ideas of Banker-OMD
• Calculate 𝑤$+ after feedback arrives

• Step-dependent learning rate 𝜂$ = 𝜎$,!
• 𝜎" “action scale”

• Single-step OMD lemma still holds:
𝑥$ − 𝑦, @𝑙$ ≤ 𝜎$𝐷* 𝑦, 𝑥$ − 𝜎$𝐷* 𝑦, ∇JΨ∗ 𝑤+

$ + 𝜎$𝐷*∗ 𝑤$+, 𝑤$.

Primal Space Δ! Dual Space ℝ!

𝑥'!

𝑥'"

𝑥'#

𝑤'!
#

𝑤'"
#

𝑤'#
#

∇Ψ 𝑥! + 𝜎!"#-𝑙!

High-Level Ideas of Banker-OMD
• Calculate 𝑤$+ after feedback arrives

• Step-dependent learning rate 𝜂$ = 𝜎$,!
• 𝜎" “action scale”

• Single-step OMD lemma still holds:
𝑥$ − 𝑦, @𝑙$ ≤ 𝜎$𝐷* 𝑦, 𝑥$ − 𝜎$𝐷* 𝑦, ∇JΨ∗ 𝑤+

$ + 𝜎$𝐷*∗ 𝑤$+, 𝑤$.

Primal Space Δ! Dual Space ℝ!

𝑥'!

𝑥'"

𝑥'#

𝑤'!
#

𝑤'"
#

𝑤'#
#

∇Ψ 𝑥! + 𝜎!"#-𝑙!

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

Dual Space ℝ!

𝑤'!
#

𝑤'#
#

Primal Space Δ!

𝑤'"
#

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

Dual Space ℝ!

𝑤'!
#

𝑤'#
#

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

Dual Space ℝ!

𝑤'!
#

𝑤'#
#

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

𝜎!"
𝜎!! + 𝜎!" + 𝜎!#

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

Dual Space ℝ!

𝑤'!
#

𝑤'#
#

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

𝜎!"
𝜎!! + 𝜎!" + 𝜎!#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤'#
#

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

𝜎!"
𝜎!! + 𝜎!" + 𝜎!#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤'#
#

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

𝜎!"
𝜎!! + 𝜎!" + 𝜎!#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

∇,Ψ∗

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤'#
#

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

𝜎!"
𝜎!! + 𝜎!" + 𝜎!#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

𝑥∗ ∇,Ψ∗

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤'#
#

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

𝜎!"
𝜎!! + 𝜎!" + 𝜎!#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

𝑥∗

Can be executed at scale
𝜎"! + 𝜎"" + 𝜎"#

∇,Ψ∗

High-Level Ideas of Banker-OMD
• Core observation:

• Convex combination on dual space keeps balance of bookkeeping: ∀𝑡", 𝑡$, … , 𝑡(, we have

1
)
𝜎'$ 𝐷* 𝑦, ∇,Ψ∗ 𝑤'$

≥𝜎+𝐷* 𝑦, 𝑥∗ , where 𝜎+ =1
)
𝜎'$, 𝑥∗ = ∇,Ψ∗ 1

)

𝜎'$
𝜎+
𝑤'$
.

• We are allowed to execute 𝑥∗ at scale 𝜎+ “free of charge”!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤'#
#

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

𝜎!"
𝜎!! + 𝜎!" + 𝜎!#

𝜎!!
𝜎!! + 𝜎!" + 𝜎!#

𝑥∗

Can be executed at scale
𝜎"! + 𝜎"" + 𝜎"#

∇,Ψ∗

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

Primal Space Δ!

𝑤'"
#

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

Primal Space Δ!

𝑤'"
#

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

𝑤-

Primal Space Δ!

𝑤'"
#

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤-

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!

𝜎!"
𝜎!

𝑏!
𝜎!

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤-

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!

𝜎!"
𝜎!

𝑏!
𝜎!

𝑥'

∇,Ψ∗

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤-

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!

𝜎!"
𝜎!

𝑏!
𝜎!

𝑥'

Can be executed at scale
𝜎" = 𝜎"! + 𝜎"" + 𝑏"

∇,Ψ∗

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤-

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!

𝜎!"
𝜎!

𝑏!
𝜎!

𝑥'

Can be executed at scale
𝜎" = 𝜎"! + 𝜎"" + 𝑏"

∇,Ψ∗

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤-

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!

𝜎!"
𝜎!

𝑏!
𝜎!

𝑥'

Can be executed at scale
𝜎" = 𝜎"! + 𝜎"" + 𝑏"

∇,Ψ∗

𝑏'𝐷* 𝑦, 𝑥- extra cost

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤-

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!

𝜎!"
𝜎!

𝑏!
𝜎!

𝑥'

Can be executed at scale
𝜎" = 𝜎"! + 𝜎"" + 𝑏"

∇,Ψ∗

𝑏'𝐷* 𝑦, 𝑥- extra cost

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤-

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!

𝜎!"
𝜎!

𝑏!
𝜎!

𝑥'

Can be executed at scale
𝜎" = 𝜎"! + 𝜎"" + 𝑏"

∇,Ψ∗

𝑏'𝐷* 𝑦, 𝑥- extra cost

High-Level Ideas of Banker-OMD

• Overdrafting:
• Want if we want larger scale 𝜎' > 𝜎∑ = 𝜎'! + 𝜎'" ?

• Apply a “default investment” 𝑥- =
"
!
, … , "

!
(with mirror image 𝑤-)

• Required “investment” on 𝑥-: 𝑏' = 𝜎' − 𝜎+
• “Imaginary” 𝑏'𝐷* 𝑦, 𝑥- − 𝑏'𝐷* 𝑦, ∇,Ψ∗ 𝑤- terms

• Banker-OMD:
• Consistent rule for regret bookkeeping, ensuring

Regret. ≤1
'
𝑏' ⋅ 𝐷* 𝑦, 𝑥- +1

'
𝜎'𝐷*∗ 𝑤'#, 𝑤' !

• And... provides general scale rule to deal with delays!

D𝒪 𝐷 + 𝑇 − style bounds made easy!

Dual Space ℝ!

𝑤'!
#

𝑤∗#

𝑤-

Primal Space Δ!

𝑤'"
#

𝜎!!
𝜎!

𝜎!"
𝜎!

𝑏!
𝜎!

𝑥'

Can be executed at scale
𝜎" = 𝜎"! + 𝜎"" + 𝑏"

∇,Ψ∗

𝑏'𝐷* 𝑦, 𝑥- extra cost

Main Theorem of Banker-OMD

• Given a practical algorithm based on vanilla OMD
with 𝒪(𝐶 𝑇) regret for non-delayed adversarial
bandit problem, there is a Banker-OMD based
version using the same regularizer, guaranteeing

𝒪 𝐶 𝑇 + 𝐶+ 𝐷 log𝐷
regret in the delayed-feedback setting.

• Non-delayed Algorithm ≈ OMD +
Regularizer + Step-sizes

• Delay-robust Algorithm ≈ Banker-OMD+
Same regularizer + Modified step-sizes

Main Theorem of Banker-OMD

• Given a practical algorithm based on vanilla OMD
with 𝒪(𝐶 𝑇) regret for non-delayed adversarial
bandit problem, there is a Banker-OMD based
version using the same regularizer, guaranteeing

𝒪 𝐶 𝑇 + 𝐶+ 𝐷 log𝐷
regret in the delayed-feedback setting.

• Non-delayed Algorithm ≈ OMD +
Regularizer + Step-sizes

• Delay-robust Algorithm ≈ Banker-OMD+
Same regularizer + Modified step-sizes

New Results of
Banker-OMD

• BOLO (Abernethy et al., 2008) ensures regret
𝑂 𝑛!./ 𝑇 log 𝑇

for 𝑛-dim adversarial linear bandits.

• Banker-BOLO (Ours) ensures regret
𝒪 𝑛!./ log 𝑇 𝑇 + 𝐷 log𝐷 + 𝑛" 𝐷 log 𝑇

for 𝑛-dim delayed adversarial linear bandits.

• State-of-the-art regret bound
for non-delayed scale-free MABs (Ours):

𝒪 𝐾𝑇𝐿 log 𝑇 + 𝐿 log 𝐿 .

• Banker version regret bound
for delayed scale-free MABs (Ours):

X𝑂 𝐾 𝐷 + 𝑇 𝐿 .

New Results of
Banker-OMD

• BOLO (Abernethy et al., 2008) ensures regret
𝑂 𝑛!./ 𝑇 log 𝑇

for 𝑛-dim adversarial linear bandits.

• Banker-BOLO (Ours) ensures regret
𝒪 𝑛!./ log 𝑇 𝑇 + 𝐷 log𝐷 + 𝑛" 𝐷 log 𝑇

for 𝑛-dim delayed adversarial linear bandits.

• State-of-the-art regret bound
for non-delayed scale-free MABs (Ours):

𝒪 𝐾𝑇𝐿 log 𝑇 + 𝐿 log 𝐿 .

• Banker version regret bound
for delayed scale-free MABs (Ours):

X𝑂 𝐾 𝐷 + 𝑇 𝐿 .

New Results of
Banker-OMD

• BOLO (Abernethy et al., 2008) ensures regret
𝑂 𝑛!./ 𝑇 log 𝑇

for 𝑛-dim adversarial linear bandits.

• Banker-BOLO (Ours) ensures regret
𝒪 𝑛!./ log 𝑇 𝑇 + 𝐷 log𝐷 + 𝑛" 𝐷 log 𝑇

for 𝑛-dim delayed adversarial linear bandits.

• State-of-the-art regret bound
for non-delayed scale-free MABs (Ours):

𝒪 𝐾𝑇𝐿 log 𝑇 + 𝐿 log 𝐿 .

• Banker version regret bound
for delayed scale-free MABs (Ours):

X𝑂 𝐾 𝐷 + 𝑇 𝐿 .

New Results of
Banker-OMD

• BOLO (Abernethy et al., 2008) ensures regret
𝑂 𝑛!./ 𝑇 log 𝑇

for 𝑛-dim adversarial linear bandits.

• Banker-BOLO (Ours) ensures regret
𝒪 𝑛!./ log 𝑇 𝑇 + 𝐷 log𝐷 + 𝑛" 𝐷 log 𝑇

for 𝑛-dim delayed adversarial linear bandits.

• State-of-the-art regret bound
for non-delayed scale-free MABs (Ours):

𝒪 𝐾𝑇𝐿 log 𝑇 + 𝐿 log 𝐿 .

• Banker version regret bound
for delayed scale-free MABs (Ours):

X𝑂 𝐾 𝐷 + 𝑇 𝐿 .

New Results of
Banker-OMD

• BOLO (Abernethy et al., 2008) ensures regret
𝑂 𝑛!./ 𝑇 log 𝑇

for 𝑛-dim adversarial linear bandits.

• Banker-BOLO (Ours) ensures regret
𝒪 𝑛!./ log 𝑇 𝑇 + 𝐷 log𝐷 + 𝑛" 𝐷 log 𝑇

for 𝑛-dim delayed adversarial linear bandits.

• State-of-the-art regret bound
for non-delayed scale-free MABs (Ours):

𝒪 𝐾𝑇𝐿 log 𝑇 + 𝐿 log 𝐿 .

• Banker version regret bound
for delayed scale-free MABs (Ours):

X𝑂 𝐾 𝐷 + 𝑇 𝐿 .

The End

• Thank for listening!

References

Putta S R, Agrawal S. Scale-Free Adversarial Multi Armed Bandits[C]//International Conference on
Algorithmic Learning Theory. PMLR, 2022: 910-930.
Bistritz I, Zhou Z, Chen X, et al. Online exp3 learning in adversarial bandits with delayed feedback[J].
Advances in neural information processing systems, 2019, 32.
Abernethy J D, Hazan E, Rakhlin A. An efficient algorithm for bandit linear optimization[C]//21st Annual
Conference on Learning Theory. 2008.
Zimmert J, Seldin Y. An optimal algorithm for adversarial bandits with arbitrary delays[C]//International
Conference on Artificial Intelligence and Statistics. PMLR, 2020: 3285-3294.
Thune T S, Cesa-Bianchi N, Seldin Y. Nonstochastic multiarmed bandits with unrestricted delays[J].
Advances in Neural Information Processing Systems, 2019, 32.

