Refined Regret for Adversarial MDPs with Linear Function Approximation

Yan Dai ${ }^{1}$, Haipeng Luo ${ }^{2}$, Chen-Yu Wei ${ }^{3}$, Julian Zimmert ${ }^{4}$
${ }^{1}$ IIIS, Tsinghua University
${ }^{3}$ IDSS, MIT
${ }^{2}$ University of Southern California
${ }^{4}$ Google Research

Presented by Yan Dai

Problem Setup \& Related Work

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying $\operatorname{losses} \ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear $\mathrm{Q}-\mathrm{function} Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown
- Linear AMDP: Linear-Q AMDP with linear transitions: $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), v\left(s^{\prime}\right)\right\rangle$

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown
- Linear AMDP: Linear-Q AMDP with linear transitions: $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), v\left(s^{\prime}\right)\right\rangle$
- Regret: Expected difference between losses collected by $\left\{\pi_{k}\right\}_{k=1}^{K}$ and a stationary comparator π^{*}

Table 1: Comparison with related works on Linear-Q AMDPs (with a simulator); $\tilde{\mathcal{O}}$ hides all logarithmic factors

	Assumption	Regret
Luo et al. (2021)	None	$\tilde{\mathcal{O}}\left(d^{2 / 3} H^{2} K^{2 / 3}\right)$

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown
- Linear AMDP: Linear-Q AMDP with linear transitions: $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), v\left(s^{\prime}\right)\right\rangle$
- Regret: Expected difference between losses collected by $\left\{\pi_{k}\right\}_{k=1}^{K}$ and a stationary comparator π^{*}

Table 1: Comparison with related works on Linear-Q AMDPs (with a simulator); $\tilde{\mathcal{O}}$ hides all logarithmic factors

	Assumption	Regret
Luo et al. (2021)	None	$\tilde{\mathcal{O}}\left(d^{2 / 3} H^{2} K^{2 / 3}\right)$
	Exploratory Policy π_{0}	$\tilde{\mathcal{O}}\left(\operatorname{poly}(d, H)\left(K / \lambda_{0}\right)^{1 / 2}\right)$

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown
- Linear AMDP: Linear-Q AMDP with linear transitions: $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), v\left(s^{\prime}\right)\right\rangle$
- Regret: Expected difference between losses collected by $\left\{\pi_{k}\right\}_{k=1}^{K}$ and a stationary comparator π^{*}

Table 1: Comparison with related works on Linear-Q AMDPs (with a simulator); $\tilde{\mathcal{O}}$ hides all logarithmic factors

	Assumption	Regret
Luo et al. (2021)	None	$\tilde{\mathcal{O}}\left(d^{2 / 3} H^{2} K^{2 / 3}\right)$
	Exploratory Policy π_{0}	$\tilde{\mathcal{O}}\left(\operatorname{poly}(d, H)\left(K / \lambda_{0}\right)^{1 / 2}\right)$
This paper	None	$\tilde{\mathcal{O}}\left(A^{1 / 2} d^{1 / 2} H^{3} K^{1 / 2}\right)$

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown
- Linear AMDP: Linear-Q AMDP with linear transitions: $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), v\left(s^{\prime}\right)\right\rangle$
- Regret: Expected difference between losses collected by $\left\{\pi_{k}\right\}_{k=1}^{K}$ and a stationary comparator π^{*}

Table 1: Comparison with related works on Linear-Q AMDPs (with a simulator); $\tilde{\mathcal{O}}$ hides all logarithmic factors

	Assumption	Regret
Luo et al. (2021)	None	$\tilde{\mathcal{O}}\left(d^{2 / 3} H^{2} K^{2 / 3}\right)$
	Exploratory Policy π_{0}	$\tilde{\mathcal{O}}\left(\operatorname{poly}(d, H)\left(K / \lambda_{0}\right)^{1 / 2}\right)$
This paper	None	$\tilde{\mathcal{O}}\left(A^{1 / 2} d^{1 / 2} H^{3} K^{1 / 2}\right)$
This paper	None	$\tilde{\mathcal{O}}\left(d^{1 / 2} H^{3} K^{1 / 2}\right)$

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown
- Linear AMDP: Linear-Q AMDP with linear transitions: $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), v\left(s^{\prime}\right)\right\rangle$
- Regret: Expected difference between losses collected by $\left\{\pi_{k}\right\}_{k=1}^{K}$ and a stationary comparator π^{*}

Table 2: Comparison with related works on Linear AMDPs (without a simulator); $\tilde{\mathcal{O}}$ hides all logarithmic factors

	Assumption	Regret

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown
- Linear AMDP: Linear-Q AMDP with linear transitions: $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), v\left(s^{\prime}\right)\right\rangle$
- Regret: Expected difference between losses collected by $\left\{\pi_{k}\right\}_{k=1}^{K}$ and a stationary comparator π^{*}

Table 2: Comparison with related works on Linear AMDPs (without a simulator); $\tilde{\mathcal{O}}$ hides all logarithmic factors

	Assumption	Regret
Neu \& Olkhovskaya (2021)	Known Transition \& Exploratory Policy π_{0}	$\tilde{\mathcal{O}}\left(\operatorname{poly}(d, H)\left(K / \lambda_{0}\right)^{1 / 2}\right)$

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown
- Linear AMDP: Linear-Q AMDP with linear transitions: $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), v\left(s^{\prime}\right)\right\rangle$
- Regret: Expected difference between losses collected by $\left\{\pi_{k}\right\}_{k=1}^{K}$ and a stationary comparator π^{*}

Table 2: Comparison with related works on Linear AMDPs (without a simulator); $\tilde{\mathcal{O}}$ hides all logarithmic factors

	Assumption	Regret
Neu \& Olkhovskaya (2021)	Known Transition \& Exploratory Policy π_{0}	$\tilde{\mathcal{O}}\left(\operatorname{poly}(d, H)\left(K / \lambda_{0}\right)^{1 / 2}\right)$
Luo et al. (2021)	None	$\tilde{\mathcal{O}}\left(d^{2} H^{4} K^{14 / 15}\right)$

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown
- Linear AMDP: Linear-Q AMDP with linear transitions: $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), v\left(s^{\prime}\right)\right\rangle$
- Regret: Expected difference between losses collected by $\left\{\pi_{k}\right\}_{k=1}^{K}$ and a stationary comparator π^{*}

Table 2: Comparison with related works on Linear AMDPs (without a simulator); $\tilde{\mathcal{O}}$ hides all logarithmic factors

	Assumption	Regret
Neu \& Olkhovskaya (2021)	Known Transition \& Exploratory Policy π_{0}	$\tilde{\mathcal{O}}\left(\operatorname{poly}(d, H)\left(K / \lambda_{0}\right)^{1 / 2}\right)$
Luo et al. (2021)	None	$\tilde{\mathcal{O}}\left(d^{2} H^{4} K^{14 / 15}\right)$
	Exploratory Policy π_{0}	$\tilde{\mathcal{O}}\left(\operatorname{poly}(d, H)\left(K / \lambda_{0}\right)^{6 / 7}\right)$

Problem Setup \& Related Work

- Adversarial MDP: MDP with time-varying losses $\ell_{k, h}(s, a)$ but stationary transitions $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)$
- Linear-Q AMDP: AMDP with linear Q -function $Q_{k, h}^{\pi}(s, a)=\ell_{k, h}(s, a)+\mathbb{E}_{\pi}\left[Q_{k, h+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]$
- That is, $Q_{k, h}^{\pi}(s, a)=\left\langle\phi(s, a), \theta_{k, h}^{\pi}\right\rangle$ where $\phi(s, a) \in \mathbb{R}^{d}$ is known and stationary but $\theta_{k, h}^{\pi}$ is unknown
- Linear AMDP: Linear-Q AMDP with linear transitions: $\mathbb{P}_{h}\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), v\left(s^{\prime}\right)\right\rangle$
- Regret: Expected difference between losses collected by $\left\{\pi_{k}\right\}_{k=1}^{K}$ and a stationary comparator π^{*}

Table 2: Comparison with related works on Linear AMDPs (without a simulator); $\tilde{\mathcal{O}}$ hides all logarithmic factors

	Assumption	Regret
Neu \& Olkhovskaya (2021)	Known Transition \& Exploratory Policy π_{0}	$\tilde{\mathcal{O}}\left(\operatorname{poly}(d, H)\left(K / \lambda_{0}\right)^{1 / 2}\right)$
Luo et al. (2021)	None	$\tilde{\mathcal{O}}\left(d^{2} H^{4} K^{14 / 15}\right)$
	Exploratory Policy π_{0}	$\tilde{\mathcal{O}}\left(\operatorname{poly}(d, H)\left(K / \lambda_{0}\right)^{6 / 7}\right)$
This paper	None	$\tilde{\mathcal{O}}\left(\operatorname{poly}(d, A, H) K^{8 / 9}\right)$

Technical Overview

Technical Overview

- Refined Analysis of FTRL w/Log-Barrier on arbitrary loss vectors $\left\{\ell_{t} \in \mathbb{R}^{A}\right\}_{t=1}^{T}$: (no longer require $\ell_{t, i} \geq-\mathbf{1} / \eta!$)

$$
\text { Actions }\left\{x_{t} \in \Delta^{[A]}\right\}_{t=1}^{T} \text { are defined as: } \quad x_{t}=\underset{x \in \Delta^{[A]}}{\arg \min }\left\{\eta\left\{x, \sum_{t^{\prime}<t} \ell_{t^{\prime}}\right\rangle+\Psi(x)\right\}, \quad \text { where } \Psi(x)=\sum_{i=1}^{\ln } \ln \frac{1}{x_{i}}
$$

Then the following holds for any comparator $y \in \Delta^{[A]}$:

$$
\sum_{t=1}^{T}\left\langle x_{t}-y, \ell_{t}\right\rangle \leq \frac{\Psi(\mathrm{y})-\Psi\left(x_{1}\right)}{\eta}+\eta \sum_{t=1}^{T} \sum_{i=1}^{A} x_{t, i} \ell_{t, i}^{2}
$$

Technical Overview

- Refined Analysis of FTRL w/ Log-Barrier on arbitrary loss vectors $\left\{\ell_{t} \in \mathbb{R}^{A}\right\}_{t=1}^{T}$: (no longer require $\ell_{t, i} \geq-1 / \eta$!)

$$
\text { Actions }\left\{x_{t} \in \Delta^{[A]}\right\}_{t=1}^{T} \text { are defined as: } \quad x_{t}=\underset{x \in \Delta^{[A]}}{\arg \min }\left\{\eta\left|x, \sum_{t^{\prime}<t} \ell_{t^{\prime}}\right\rangle+\Psi(x)\right\}, \quad \text { where } \Psi(x)=\sum_{i=1}^{A^{\prime}} \ln \frac{1}{x_{i}} \text {. }
$$

Then the following holds for any comparator $y \in \Delta^{[A]}$:

$$
\sum_{t=1}^{T}\left\langle x_{t}-y, \ell_{t}\right\rangle \leq \frac{\Psi(\mathrm{y})-\Psi\left(x_{1}\right)}{\eta}+\eta \sum_{t=1}^{T} \sum_{i=1}^{A} x_{t, i} \ell_{t, i}^{2}
$$

- Magnitude Reduced Estimator: For an arbitrary random variable Z that can be prohibitively negative, define

$$
\hat{Z}=Z-(Z)_{-}+\mathbb{E}\left[(Z)_{-}\right], \quad \text { where }(Z)_{-}=\min (Z, 0) .
$$

Then our Magnitude Reduced Estimator \hat{Z} enjoys the following properties:

- Preserve Expectation: $\mathbb{E}[\hat{Z}]=\mathbb{E}[Z]-\mathbb{E}\left[(Z)_{-}\right]+\mathbb{E}\left[(Z)_{-}\right]=\mathbb{E}[Z]$.
- Similar Second Order Moment: $\mathbb{E}\left[Z^{2}\right] \leq 2 \mathbb{E}\left[Z^{2}\right]+2(\mathbb{E}[(Z)-])^{2}=O\left(\mathbb{E}\left[Z^{2}\right]\right)$.
- Bounded from Below: $\hat{Z} \geq \mathbb{E}\left[(Z)_{-}\right]$as $Z-(Z)_{-}=0$ when $Z<0$ and $Z-(Z)_{-}=Z \geq 0$ when $Z \geq 0$.

Technical Overview

- Refined Analysis of FTRL w/ Log-Barrier on arbitrary loss vectors $\left\{\ell_{t} \in \mathbb{R}^{A}\right\}_{t=1}^{T}$: (no longer require $\ell_{t, i} \geq-1 / \eta$!) Actions $\left\{x_{t} \in \Delta^{[A]}\right\}_{t=1}^{T}$ are defined as: $\quad x_{t}=\underset{x \in \Delta \Delta A]}{\arg \min }\left\{\eta\left|x, \sum_{t^{\prime}<t} \ell_{t^{\prime}}\right\rangle+\Psi(x)\right\}, \quad$ where $\Psi(x)=\sum_{i=1}^{A} \ln \frac{1}{x_{i}}$.
Then the following holds for any comparator $y \in \Delta^{[A]}$:

$$
\sum_{t=1}^{T}\left\langle x_{t}-y, \ell_{t}\right\rangle \leq \frac{\Psi(\mathrm{y})-\Psi\left(x_{1}\right)}{\eta}+\eta \sum_{t=1}^{T} \sum_{i=1}^{A} x_{t, i} \ell_{t, i}^{2}
$$

- Magnitude Reduced Estimator: For an arbitrary random variable Z that can be prohibitively negative, define

$$
\hat{Z}=Z-(Z)_{-}+\mathbb{E}\left[(Z)_{-}\right], \quad \text { where }(Z)_{-}=\min (Z, 0) .
$$

Then our Magnitude Reduced Estimator \hat{Z} enjoys the following properties:

- Preserve Expectation: $\mathbb{E}[\hat{Z}]=\mathbb{E}[Z]-\mathbb{E}\left[(Z)_{-}\right]+\mathbb{E}\left[(Z)_{-}\right]=\mathbb{E}[Z]$.
- Similar Second Order Moment: $\mathbb{E}\left[\hat{Z}^{2}\right] \leq 2 \mathbb{E}\left[Z^{2}\right]+2(\mathbb{E}[(Z)-])^{2}=\mathcal{O}\left(\mathbb{E}\left[Z^{2}\right]\right)$.
- Bounded from Below: $\hat{Z} \geq \mathbb{E}\left[(Z)_{-}\right]$as $Z-(Z)_{-}=0$ when $Z<0$ and $Z-(Z)_{-}=Z \geq 0$ when $Z \geq 0$.
- New Covariance Estimation Bound: For a d-dim'l distribution w/ covariance Σ, samples $\left\{\phi_{i}\right\}_{i=1}^{W}$ ensures (w.p. $1-\delta$):

$$
\left(\hat{\Sigma}^{+}\right)^{1 / 2}(\gamma I+\Sigma)\left(\hat{\Sigma}^{+}\right)^{1 / 2} \in[(1-2 \sqrt{\gamma}) I,(1+2 \sqrt{\gamma}) I], \quad \text { where } \hat{\Sigma}^{+}=\left(\gamma I+\sum_{i=1}^{W} \phi_{i} \phi_{i}^{T}\right)^{-1}, \quad \text { given } W \geq\left(4 d \log \frac{d}{\delta}\right) \gamma^{-2} .
$$

Thank You for Listening!

Email: yan-dai20@mails.tsinghua.edu.cn

References

- Haipeng Luo, Chen-Yu Wei, and Chung-Wei Lee. Policy optimization in adversarial mdps: Improved exploration via dilated bonuses. Advances in Neural Information Processing Systems, 34:22931-22942, 2021.
- Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation and bandit feedback. Advances in Neural Information Processing Systems, 34: 10407-10417, 2021.

