

Follow-the-Perturbed-Leader (FTPL) for Adversarial Markov Decision Processes (AMDP) with Bandit Feedback

Yan Dai¹, Haipeng Luo², Liyu Chen²

¹ Institute for Interdisciplinary Information Sciences, Tsinghua University

² Computer Science Department, University of Southern California

Presented by Yan Dai

Our Contribution

1. Follow-the-Perturbed Leader (FTPL) is as good as other OMD-based algorithms

Our Contribution

- 1. Follow-the-Perturbed Leader (FTPL) is as good as other OMD-based algorithms
- 2. Show that FTPL can be easily generalized to various settings, giving:
 - A near-optimal algorithm for episodic AMDPs with delays, and
 - The first no-regret algorithm for weakly-communicating infinite-horizon AMDPs.

OMD (Online Mirror Descent) VS FTPL (Follow-the-Perturbed-Leader)

Online Mirror Descent ■ Flexible in Algorithm Design Studied More in the Literature

OMD (Online Mirror Descent) **VS FTPL** (Follow-the-Perturbed-Leader)

Follow-the-Perturbed-Leader

- Easier to Implement
- More Computationally Efficient

Online Mirror Descent ■ Flexible in Algorithm Design Studied More in the Literature

OMD (Online Mirror Descent) **VS FTPL** (Follow-the-Perturbed-Leader)

Follow-the-Perturbed-Leader

- Easier to Implement
- More Computationally Efficient

Table 1: Comparison between OMD- and FTPL-Based Algorithms for Episodic AMDPs¹

OMD-Based		Transition	Feedback	FTPL-Based
(Zimin & Neu, 2013)	$\tilde{\mathcal{O}}(H\sqrt{K})$	Known	Full-info	$\tilde{\mathcal{O}}(H\sqrt{SAK})$ (Even-Dar et al., 2009)
(Zimin & Neu, 2013)	$\tilde{\mathcal{O}}(H\sqrt{SAK})$	Known	Bandit	$\tilde{\mathcal{O}}(H^2\sqrt{AK}/\alpha)$ (Neu et al., 2010)
(Rosenberg & Mansour, 2019) Č	$\tilde{\mathcal{O}}(H^2S\sqrt{AK})$	Unknown	Full-info	$\tilde{\mathcal{O}}(H^{1.5}SA\sqrt{K})$ (Neu et al., 2012)
(Jin et al., 2020) Č	$\tilde{\mathcal{O}}(H^2S\sqrt{AK})$	Unknown	Bandit	N/A (no such algorithm)

Online Mirror Descent

- Flexible in Algorithm Design
- Studied More in the Literature
- **D** Better Regret Guarantees

OMD (Online Mirror Descent) **VS FTPL** (Follow-the-Perturbed-Leader)

Follow-the-Perturbed-Leader

- Easier to Implement
- More Computationally Efficient

□ Worse Regret Guarantee

Table 1: Comparison between OMD- and FTPL-Based Algorithms for Episodic AMDPs¹

OMD-Based	Transition	Feedback	FTPL-Based
(Zimin & Neu, 2013) $\tilde{\mathcal{O}}(H\sqrt{K})$	Known	Full-info	$\tilde{\mathcal{O}}(H\sqrt{SAK})$ (Even-Dar et al., 2009)
(Zimin & Neu, 2013) $\tilde{\mathcal{O}}(H\sqrt{SAK})$	Known	Bandit	$\tilde{\mathcal{O}}(H^2\sqrt{AK}/\alpha)$ (Neu et al., 2010)
(Rosenberg & Mansour, 2019) $\tilde{\mathcal{O}}(H^2S\sqrt{AK})$	Unknown	Full-info	$\tilde{\mathcal{O}}(H^{1.5}SA\sqrt{K})$ (Neu et al., 2012)
(Jin et al., 2020) $\tilde{\mathcal{O}}(H^2S\sqrt{AK})$	Unknown	Bandit	N/A (no such algorithm)

Online Mirror Descent

- Flexible in Algorithm Design
- Studied More in the Literature
- Better Regret Guarantees?

OMD (Online Mirror Descent) **VS FTPL** (Follow-the-Perturbed-Leader)

Follow-the-Perturbed-Leader

- Easier to Implement
- More Computationally Efficient

□ Worse Regret Guarantee?

Table 1: Comparison between OMD- and FTPL-Based Algorithms for Episodic AMDPs¹

OMD-Based	Transition	Feedback	FTPL-Based
(Zimin & Neu, 2013) $\tilde{\mathcal{O}}(H\sqrt{K})$	Known	Full-info	$\tilde{\mathcal{O}}(H^2\sqrt{K})$ (Wang & Dong, 2020)
(Zimin & Neu, 2013) $\tilde{\mathcal{O}}(H\sqrt{SAK})$	Known	Bandit	$\tilde{\mathcal{O}}(H^2\sqrt{AK}/\alpha)$ (Neu et al., 2010)
(Rosenberg & Mansour, 2019) $\tilde{O}(H^2S\sqrt{AK})$	Unknown	Full-info	$\tilde{\mathcal{O}}(H^2S\sqrt{AK})$ (Wang & Dong, 2020)
(Jin et al., 2020) $\tilde{\mathcal{O}}(H^2S\sqrt{AK})$	Unknown	Bandit	N/A (no such algorithm)

Online Mirror Descent

- Flexible in Algorithm Design
- Studied More in the Literature
- □ Better Regret Guarantees×

OMD (Online Mirror Descent) **VS FTPL** (Follow-the-Perturbed-Leader)

Follow-the-Perturbed-Leader

- Easier to Implement
- More Computationally Efficient

□ Worse Regret Guarantee×

Table 1: Comparison between OMD- and FTPL-Based Algorithms for Episodic AMDPs¹

OMD-Based	Transition	Feedback	F	TPL-Based
(Zimin & Neu, 2013) $\tilde{\mathcal{O}}$	$(H\sqrt{K})$ Known	Full-info	$\tilde{\mathcal{O}}(H^2\sqrt{K})$	(Wang & Dong, 2020)
(Zimin & Neu, 2013) $\tilde{\mathcal{O}}(H)$	\sqrt{SAK}) Known	Bandit	$\tilde{\mathcal{O}}(H^{1.5}\sqrt{SAK})$	(This paper)
(Rosenberg & Mansour, 2019) $\tilde{\mathcal{O}}(H^2$.	$S\sqrt{AK}$) Unknown	Full-info	$\tilde{\mathcal{O}}(H^2S\sqrt{AK})$	(Wang & Dong, 2020)
(Jin et al., 2020) $\tilde{\mathcal{O}}(H^2)$	$S\sqrt{AK}$) Unknown	Bandit	$\tilde{\mathcal{O}}(H^2S\sqrt{AK})$	(This paper)

Technical Stuff

$$\mathcal{R}_{K} = \sum_{h=1}^{H} \mathbb{E}\left[\left\langle \mu_{\pi_{k}}, \widehat{\ell_{k}} \right\rangle - \left\langle \mu_{\pi^{*}}, \widehat{\ell_{k}} \right\rangle\right],$$

Technical Stuff

$$\mathcal{R}_{K} = \sum_{h=1}^{H} \mathbb{E}\left[\left\langle \mu_{\pi_{k}}, \widehat{\ell_{k}} \right\rangle - \left\langle \mu_{\pi^{*}}, \widehat{\ell_{k}} \right\rangle\right],$$

$$\mathcal{R}_{K} = \sum_{k=1}^{K} \mathbb{E}\left[\left\langle \mu_{\pi_{k}}, \widehat{\ell_{k}} \right\rangle - \left\langle \mu_{\pi_{k+1}}, \widehat{\ell_{k}} \right\rangle\right] + \sum_{k=1}^{K} \mathbb{E}\left[\left\langle \mu_{\pi_{k+1}}, \widehat{\ell_{k}} \right\rangle - \left\langle \mu_{\pi^{*}}^{h}, \widehat{\ell_{k}} \right\rangle\right].$$
Stability Term (every single step controlled by (\verta)?) Error Term (controlled by "be-the-leader" lemma)

Technical Stuff

$$\mathcal{R}_{K} = \sum_{h=1}^{H} \mathbb{E}\left[\left\langle \mu_{\pi_{k}}, \widehat{\ell_{k}} \right\rangle - \left\langle \mu_{\pi^{*}}, \widehat{\ell_{k}} \right\rangle\right],$$

$$\mathcal{R}_{K} = \sum_{k=1}^{K} \mathbb{E}\left[\left\langle \mu_{\pi_{k}}, \widehat{\ell_{k}} \right\rangle - \left\langle \mu_{\pi_{k+1}}, \widehat{\ell_{k}} \right\rangle\right] + \sum_{k=1}^{K} \mathbb{E}\left[\left\langle \mu_{\pi_{k+1}}, \widehat{\ell_{k}} \right\rangle - \left\langle \mu_{\pi^{*}}^{h}, \widehat{\ell_{k}} \right\rangle\right].$$

$$\underset{(\text{every single step controlled by ($\frac{1}{2}$)?})}{\text{Stability Term}} \qquad \underset{(\text{controlled by "be-the-leader" lemma)}{\text{Error Term}}$$

$$\mathbb{E}\left[\sum_{\pi \in \Pi} (p_{k}(\pi) - p_{k+1}(\pi)) \left\langle \mu_{\pi}, \widehat{\ell_{k}} \right\rangle\right] \leq \eta \mathbb{E}\left[\sum_{\pi \in \Pi} p_{k}(\pi) \left\langle \mu_{\pi}, \widehat{\ell_{k}} \right\rangle^{2}\right] \qquad ($\frac{($\frac{1}{2}$)}{($\text{Syrgkanis et al., 2016})} \\ \text{Lemma 10}^{2}$$

Invalid when $\mu_{\pi}^{h} \notin \{0,1\}^{d}$ (non-binary feature)!

 $^{2} p_{k}(\pi)$ denotes the probability of playing π in the *k*-th episode.

Technical Stuff

$$\mathcal{R}_{K} = \sum_{h=1}^{H} \mathbb{E}\left[\left\langle \mu_{\pi_{k}}, \widehat{\ell_{k}} \right\rangle - \left\langle \mu_{\pi^{*}}, \widehat{\ell_{k}} \right\rangle\right],$$

$$\mathcal{R}_{K} = \sum_{k=1}^{K} \mathbb{E}\left[\left\langle \mu_{\pi_{k}}, \widehat{\ell_{k}} \right\rangle - \left\langle \mu_{\pi_{k+1}}, \widehat{\ell_{k}} \right\rangle\right] + \sum_{k=1}^{K} \mathbb{E}\left[\left\langle \mu_{\pi_{k+1}}, \widehat{\ell_{k}} \right\rangle - \left\langle \mu_{\pi^{*}}^{h}, \widehat{\ell_{k}} \right\rangle\right].$$
Stability Term
(every single step controlled by (**I**)!)
Error Term
(controlled by "be-the-leader" lemma)
$$\mathbb{E}\left[\sum_{\pi \in \Pi} (p_{k}(\pi) - p_{k+1}(\pi)) \left\langle \mu_{\pi}, \widehat{\ell_{k}} \right\rangle\right] \leq \eta \mathbb{E}\left[\left(\sum_{h=1}^{H} \|\widehat{\ell_{k}^{h}}\|_{1}\right) \sum_{\pi \in \Pi} p_{k}(\pi) \left\langle \mu_{\pi}, \widehat{\ell_{k}} \right\rangle^{1}\right]$$
(**I**)
(**I**

Only loosen by *H* times.

 $^{2} p_{k}(\pi)$ denotes the probability of playing π in the *k*-th episode.

Beyond Episodic AMDPs

Beyond Episodic AMDPs

Feedback Delays? No Problem!

Table 2: Application to Episodic AMDP with Feedback Delays³

Algorithm	Regret	
Delayed Hedge	$\tilde{\mathcal{O}}(H^2S\sqrt{AK} + H^{1.5}\sqrt{S\mathfrak{D}})$	
Delayed UOB-FTRL	$\tilde{\mathcal{O}}(H^2S\sqrt{AK} + H^{1.5}SA\sqrt{\mathfrak{D}})$	
Delayed UOB-REPS	$\tilde{\mathcal{O}}(H^2S\sqrt{AK} + H^{5/4}(SA)^{1/4}\sqrt{\mathfrak{D}})$	
This paper	$\tilde{\mathcal{O}}(H^2S\sqrt{AK} + H^{1.5}SA\sqrt{\mathfrak{D}})$	

³ D is the total feedback delay. The first three OMD-based algorithms are all designed by Jin et al. (2022). Our algorithm is based on the second one.

Whether we can design FTPL-based algorithms using the "delay-adapted" loss estimator introduced by the third algorithm is left for future research.

Beyond Episodic AMDPs

Feedback Delays? No Problem!

Table 2: Application to Episodic AMDP with Feedback Delays³

Algorithm	Regret		
Delayed Hedge	$\tilde{\mathcal{O}}(H^2S\sqrt{AK} + H^{1.5}\sqrt{S\mathfrak{D}})$		
Delayed UOB-FTRL	$\tilde{\mathcal{O}}(H^2S\sqrt{AK} + H^{1.5}SA\sqrt{\mathfrak{D}})$		
Delayed UOB-REPS	$\tilde{\mathcal{O}}(H^2S\sqrt{AK} + H^{5/4}(SA)^{1/4}\sqrt{\mathfrak{D}})$		
This paper	$\tilde{\mathcal{O}}(H^2S\sqrt{AK} + H^{1.5}SA\sqrt{\mathfrak{D}})$		

³ D is the total feedback delay. The first three OMD-based algorithms are all designed by Jin et al. (2022). Our algorithm is based on the second one.

Whether we can design FTPL-based algorithms using the "delay-adapted" loss estimator introduced by the third algorithm is left for future research.

Infinite Horizon? Also Okay!

Table 3: Application to Infinite-Horizon AMDPs ⁴

Algorithm	Regret		
Neu et al. (2014)	$\tilde{\mathcal{O}}(\tau^{1.5}\sqrt{AT})$ (Ergodic)		
Dekel & Hazan (2013)	$\tilde{\mathcal{O}}(S^3 A T^{2/3})$ (Deterministic)		
This paper	$\tilde{\mathcal{O}}(A^{1/2}(SD)^{2/3}T^{5/6})$ (Commu)		
Dekel et al. (2014)	$\Omega(S^{1/3}T^{2/3})$ (Commu)		

⁴ For infinite-horizon AMDPs, assumptions about transitions are needed.

- Ergodic: the mixing time τ exists (*strong* assumption).
- Deterministic: all transitions are non-random (*strong* assumption).
- Communicating: the diameter *D* exists (the *weakest* assumption). Hence, our paper considers the weakest communicating assumption and is the first to achieve a "no-regret" guarantee under bandit feedback.

Thank You for Listening!

Email: yan-dai20@mails.tsinghua.edu.cn

References

(I) OMD-Based Algorithms for Episodic AMDPs

- Alexander Zimin and Gergely Neu. Online learning in episodic markovian decision processes by relative entropy policy search. *Advances in neural information processing systems*, 26, 2013.
- Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial markov decision processes. In *International Conference on Machine Learning*, pages 5478–5486. PMLR, 2019.
- Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning adversarial markov decision processes with bandit feedback and unknown transition. In *International Conference on Machine Learning*, pages 4860–4869. PMLR, 2020.

(II) FTPL-Based Algorithms for Episodic AMDPs

- Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online markov decision processes. *Mathematics of Operations Research*, 34(3):726–736, 2009.
- Gergely Neu, András György, and Csaba Szepesvári. The online loop-free stochastic shortest-path problem. In *COLT 2010 The 23rd Conference on Learning Theory*, pages 231–243. Omnipress, 2010.
- Gergely Neu, Andras Gyorgy, and Csaba Szepesvári. The adversarial stochastic shortest path problem with unknown transition probabilities. In *Artificial Intelligence and Statistics*, pages 805–813. PMLR, 2012.

- Yuanhao Wang and Kefan Dong. Refined analysis of fpl for adversarial markov decision processes. arXiv:2008.09251, 2020.
- Vasilis Syrgkanis, Akshay Krishnamurthy, and Robert Schapire. Efficient algorithms for adversarial contextual learning. In International Conference on Machine Learning, pages 2159–2168. PMLR, 2016.

(III) Episodic AMDPs with Feedback Delays

• Tiancheng Jin, Tal Lancewicki, Haipeng Luo, Yishay Mansour, and Aviv Rosenberg. Near-optimal regret for adversarial mdp with delayed bandit feedback. arXiv:2201.13172, 2022.

(IV) Infinite-Horizon AMDPs

- Gergely Neu, András György, Csaba Szepesvári, and András Antos. Online markov decision processes under bandit feedback. IEEE Transactions on Automatic Control, 59:676–691, 2014.
- Ofer Dekel and Elad Hazan. Better rates for any adversarial deterministic mdp. In International Conference on Machine Learning, pages 675–683. PMLR, 2013.
- Ofer Dekel, Jian Ding, Tomer Koren, and Yuval Peres. Bandits with switching costs: T 2/3 regret. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 459–467, 2014.