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Our Contribution

1. Follow-the-Perturbed Leader (FTPL) is as good as other OMD-based algorithms
2. Show that FTPL can be easily generalized to various settings, giving:

• A near-optimal algorithm for episodic AMDPs with delays, and
• The first no-regret algorithm for weakly-communicating infinite-horizon AMDPs.
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Online Mirror Descent
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n Studied More in the Literature

Follow-the-Perturbed-Leader
n Easier to Implement
n More Computationally Efficient

OMD-Based Transition Feedback FTPL-Based

(Zimin & Neu, 2013)          !𝒪(𝐻 𝐾) Known Full-info !𝒪(𝐻 𝑆𝐴𝐾) (Even-Dar et al., 2009)

(Zimin & Neu, 2013)    !𝒪(𝐻 𝑆𝐴𝐾) Known Bandit !𝒪(𝐻! 𝐴𝐾/𝛼) (Neu et al., 2010)

(Rosenberg & Mansour, 2019)  !𝒪(𝐻!𝑆 𝐴𝐾) Unknown Full-info !𝒪(𝐻".$𝑆𝐴 𝐾) (Neu et al., 2012)

(Jin et al., 2020)  !𝒪(𝐻!𝑆 𝐴𝐾) Unknown Bandit N/A (no such algorithm)

Table 1: Comparison between OMD- and FTPL-Based Algorithms for Episodic AMDPs 1

1 𝐾 is the number of episodes, 𝐻 is the episode length, 𝑆 is the number of states, and 𝐴 is the number of actions.
%𝒪 hides all logarithmic factors. 𝛼 by Neu et al. (2012) is a parameter of a strong exploratory assumption. 
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Algorithm Regret

Delayed Hedge !𝒪(𝐻!𝑆 𝐴𝐾 + 𝐻".$ 𝑆𝔇)
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3 𝔇 is the total feedback delay. The first three OMD-based algorithms are all
designed by Jin et al. (2022). Our algorithm is based on the second one.

Whether we can design FTPL-based algorithms using the “delay-adapted”
loss estimator introduced by the third algorithm is left for future research.

Feedback Delays? No Problem!
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Table 2: Application to Episodic AMDP with Feedback Delays 3

3 𝔇 is the total feedback delay. The first three OMD-based algorithms are all
designed by Jin et al. (2022). Our algorithm is based on the second one.

Whether we can design FTPL-based algorithms using the “delay-adapted”
loss estimator introduced by the third algorithm is left for future research.

Algorithm Regret

Neu et al. (2014) !𝒪(𝜏".$ 𝐴𝑇) (Ergodic) 
Dekel & Hazan (2013) !𝒪(𝑆/𝐴𝑇!//) (Deterministic) 

This paper !𝒪(𝐴"/! 𝑆𝐷 !//𝑇$/0) (Commu) 
Dekel et al. (2014) Ω(𝑆"//𝑇!//) (Commu) 

Table 3: Application to Infinite-Horizon AMDPs 4

4 For infinite-horizon AMDPs, assumptions about transitions are needed.
• Ergodic: the mixing time 𝜏 exists (strong assumption).
• Deterministic: all transitions are non-random (strong assumption).
• Communicating: the diameter 𝐷 exists (the weakest assumption).
Hence, our paper considers the weakest communicating assumption and is
the first to achieve a “no-regret” guarantee under bandit feedback.

Feedback Delays? No Problem! Infinite Horizon? Also Okay!
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