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Sharpness-Aware Minimization (SAM)
• Introduced by Foret et al. [2021] that performs sequential updates to loss function 𝐿:

𝑤!"# = 𝑤! − 𝜂∇𝐿 𝑤! +
𝜌∇𝐿 𝑤!
∇𝐿 𝑤! $

, ∀𝑡 = 1,2, … (1)

• Very impressive performance in training deep neural networks to generalize well
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• Theoretical analyses were conducted towards characterizing SAM dynamics & properties, 
while most of them removes normalization [Andriushchenko & Flammarion; 2022] as:

𝑤!"# = 𝑤! − 𝜂∇𝐿 𝑤! + 𝜌∇𝐿 𝑤! , ∀𝑡 = 1,2, … (2)

• The simplified version (Unnormalized SAM, or USAM) gives elegant theoretical results
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while most of them removes normalization [Andriushchenko & Flammarion; 2022] as:
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• The simplified version (Unnormalized SAM, or USAM) gives elegant theoretical results

• Question: What’s the role of normalization (i.e., factor 1/‖∇𝐿(𝑤!)‖) in SAM update (1)?
• In other words… Whether the simplification in (2) can be safely adopted to simplify analysis?
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Motivating Experiments
• Setup: over-parameterized matrix sensing problem [Li et al., 2018]

Same initialization (far from minimum);
Fix 𝜂 (for which GD works) & adjust 𝜌

SAM is much more stable than USAM!

Same initialization (near minimum)
USAM gets stuck -- just like GD

SAM w/ diff 𝝆 finds same minimum
(believed to be good for generalization
[Bartlett et al., 2022; Wen et al., 2023])
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• Normalization helps with stability: a “large” 𝝆 causes USAM to diverge

• Theorem 1. For strongly convex & smooth 𝐿, SAM converges w/ configuration (𝜂, 𝜌) as 
long as 𝜂 < 2/𝛽 (i.e., GD converges), but USAM diverges a.s. if 𝜂 > 2/ (𝛽 + 𝜌𝛽$)!

• Theorem 2. For scalar factorization 𝐿 𝑥, 𝑦 = (𝑥𝑦$)/2 with 𝜂 = 𝑜(1), SAM finds an

𝓞(𝝆)-neighborhood of (0,0) when 𝜌 = 𝒪(1), but USAM diverges once 𝜌 ≈ 𝜂 = 𝑜(1)!

• Normalization permits moving along minima
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• Theorem 2. For scalar factorization 𝐿 𝑥, 𝑦 = (𝑥𝑦$)/2 with 𝜂 = 𝑜(1), SAM finds an

𝓞(𝝆)-neighborhood of (0,0) when 𝜌 = 𝒪(1), but USAM diverges once 𝜌 ≈ 𝜂 = 𝑜(1)!

• Normalization permits moving along minima: a “small” 𝝆 makes USAM stuck

• Theorems 3-5. For single-neuron linear net 𝐿 𝑥, 𝑦 = ℓ(𝑥𝑦) [Ahn et al., 2023a] inited @ 
(𝑥%, 𝑦%), GD finds (0, 𝑦&) w/ 𝑦&$ ≈ 𝑚𝑖𝑛(𝑦%$ − 𝑥%$, 2/𝜂) [Ahn et al., 2023a] (so 𝒚&𝟐 ≫ 𝟎), 
USAM finds (0, 𝑦&) w/ (1 + 𝜌𝑦&$ )𝑦&$ ≈ 2/𝜂 (again 𝒚&𝟐 ≫ 𝟎), SAM finds 𝒚&𝟐 = 𝒐(𝟏)!

• Theorem 6. For PL & smooth 𝐿, the distance USAM travels along manifold is bounded!
• Main Takeaway: USAM is sensitive to (𝜼, 𝝆)-choice & behaves differently from SAM!
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