

The Crucial Role of Normalization in Sharpness-Aware Minimization

Yan Dai ^{* 1}, Kwangjun Ahn ^{* 2}, Suvrit Sra ^{2 3} ¹ IIIS, Tsinghua ² EECS, MIT ³ TU Munich

Presented by Yan Dai

Sharpness-Aware Minimization (SAM)

• Introduced by Foret et al. [2021] that performs sequential updates to loss function *L*:

$$w_{t+1} = w_t - \eta \nabla L \left(w_t + \frac{\rho \nabla L(w_t)}{\|\nabla L(w_t)\|_2} \right), \forall t = 1, 2, \dots$$
(1)

$$\uparrow$$
Normalization Factor

• Very impressive performance in training deep neural networks to generalize well

Sharpness-Aware Minimization (SAM)

• Introduced by Foret et al. [2021] that performs sequential updates to loss function *L*:

$$w_{t+1} = w_t - \eta \nabla L \left(w_t + \frac{\rho \nabla L(w_t)}{\|\nabla L(w_t)\|_2} \right), \forall t = 1, 2, \dots$$
(1)
Normalization Factor

- Very impressive performance in training deep neural networks to generalize well
- Theoretical analyses were conducted towards characterizing SAM dynamics & properties, while most of them **removes normalization** [Andriushchenko & Flammarion; 2022] as: $w_{t+1} = w_t - \eta \nabla L(w_t + \rho \nabla L(w_t)), \forall t = 1, 2, ...$ (2)
- The simplified version (Unnormalized SAM, or USAM) gives elegant theoretical results

Sharpness-Aware Minimization (SAM)

• Introduced by Foret et al. [2021] that performs sequential updates to loss function *L*:

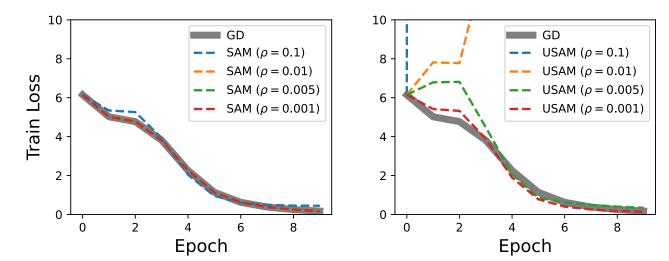
$$w_{t+1} = w_t - \eta \nabla L \left(w_t + \frac{\rho \nabla L(w_t)}{\|\nabla L(w_t)\|_2} \right), \forall t = 1, 2, \dots$$
(1)
Normalization Factor

- Very impressive performance in training deep neural networks to generalize well
- Theoretical analyses were conducted towards characterizing SAM dynamics & properties, while most of them **removes normalization** [Andriushchenko & Flammarion; 2022] as: $w_{t+1} = w_t - \eta \nabla L(w_t + \rho \nabla L(w_t)), \forall t = 1, 2, ...$ (2)
- The simplified version (Unnormalized SAM, or USAM) gives elegant theoretical results
- Question: What's the role of normalization (i.e., factor $1/||\nabla L(w_t)||$) in SAM update (1)?
 - In other words... Whether the simplification in (2) can be safely adopted to simplify analysis?

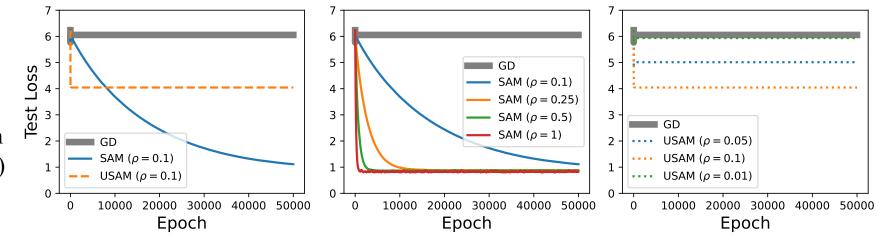
Motivating Experiments

• Setup: over-parameterized matrix sensing problem [Li et al., 2018]

Same initialization (far from minimum); Fix η (for which GD works) & adjust ρ SAM is much more stable than USAM!



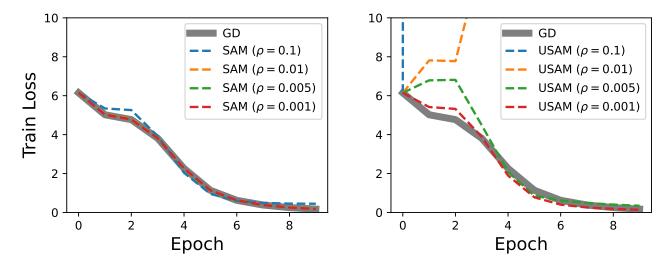
Same initialization (near minimum) USAM gets stuck -- just like GD SAM w/ diff ρ finds same minimum (believed to be good for generalization [Bartlett et al., 2022; Wen et al., 2023])



Motivating Experiments

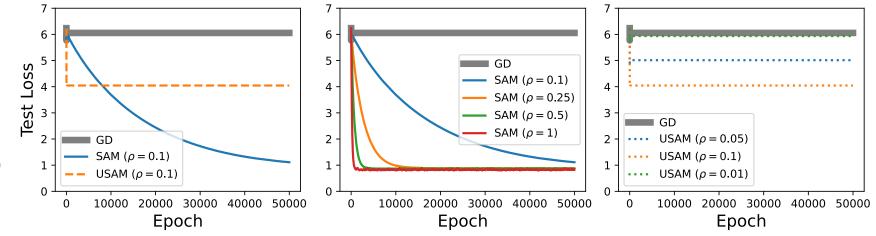
- Setup: over-parameterized matrix sensing problem [Li et al., 2018]
- Normalization helps with stability

Same initialization (far from minimum); Fix η (for which GD works) & adjust ρ SAM is much more stable than USAM!



• Normalization permits moving along minima

Same initialization (near minimum) USAM gets stuck -- just like GD SAM w/ diff ρ finds same minimum (believed to be good for generalization [Bartlett et al., 2022; Wen et al., 2023])



Theoretical Results (Informal)

(more empirical results are contained in our paper)

• Normalization helps with stability

• Normalization permits moving along minima

Theoretical Results (Informal)

(more empirical results are contained in our paper)

- Normalization helps with stability: a "large" ρ causes USAM to diverge
- **Theorem 1**. For *strongly convex & smooth L*, **SAM converges** w/ configuration (η , ρ) as long as $\eta < 2/\beta$ (i.e., **GD converges**), but **USAM diverges** a.s. if $\eta > 2/(\beta + \rho\beta^2)!$
- Theorem 2. For scalar factorization $L(x, y) = (xy^2)/2$ with $\eta = o(1)$, SAM finds an $\mathcal{O}(\rho)$ -neighborhood of (0,0) when $\rho = \mathcal{O}(1)$, but USAM diverges once $\rho \approx \eta = o(1)!$
- Normalization permits moving along minima

Theoretical Results (Informal)

(more empirical results are contained in our paper)

- Normalization helps with stability: a "large" ρ causes USAM to diverge
- Theorem 1. For strongly convex & smooth L, SAM converges w/ configuration (η, ρ) as long as η < 2/β (i.e., GD converges), but USAM diverges a.s. if η > 2/ (β + ρβ²)!
- Theorem 2. For scalar factorization $L(x, y) = (xy^2)/2$ with $\eta = o(1)$, SAM finds an $\mathcal{O}(\rho)$ -neighborhood of (0,0) when $\rho = \mathcal{O}(1)$, but USAM diverges once $\rho \approx \eta = o(1)!$
- Normalization permits moving along minima: a "small" ρ makes USAM stuck
- Theorems 3-5. For single-neuron linear net $L(x, y) = \ell(xy)$ [Ahn et al., 2023a] inited @ (x_0, y_0) , GD finds $(0, y_\infty) \le y_\infty^2 \approx \min(y_0^2 - x_0^2, 2/\eta)$ [Ahn et al., 2023a] (so $y_\infty^2 \gg 0$), USAM finds $(0, y_\infty) \le (1 + \rho y_\infty^2) y_\infty^2 \approx 2/\eta$ (again $y_\infty^2 \gg 0$), SAM finds $y_\infty^2 = o(1)!$
- **Theorem 6**. For *PL* & *smooth L*, the distance **USAM travels along manifold is bounded**!
- Main Takeaway: USAM is sensitive to (η, ρ) -choice & behaves differently from SAM!

Thanks for Listening!

Email: yan-dai20@mails.tsinghua.edu.cn; kjahn@mit.edu; suvrit@mit.edu

References

- Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for efficiently improving generalization. In International Conference on Learning Representations, 2021.
- Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware minimization. In International Conference on Machine Learning, pages 639–668. PMLR, 2022.
- Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory, pages 2–47. PMLR, 2018.
- •Peter L Bartlett, Philip M Long, and Olivier Bousquet. The dynamics of sharpness-aware minimization: Bouncing across ravines and drifting towards wide minima. arXiv preprint arXiv:2210.01513, 2022.
- •Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize sharpness? In International Conference on Learning Representations, 2023.
- •Kwangjun Ahn, Sébastien Bubeck, Sinho Chewi, Yin Tat Lee, Felipe Suarez, and Yi Zhang. Learning threshold neurons via the "edge of stability". NeurIPS 2023 (arXiv:2212.07469), 2023a.